Answer:
20 masks and 100 ventilators
Step-by-step explanation:
I assume the problem ask to maximize the profit of the company.
Let's define the following variables
v: ventilator
m: mask
Restictions:
m + v ≤ 120
10 ≤ m ≤ 50
40 ≤ v ≤ 100
Profit function:
P = 10*m + 65*v
The system of restrictions can be seen in the figure attached. The five points marked are the vertices of the feasible region (the solution is one of these points). Replacing them in the profit function:
point Profit function:
(10, 100) 10*10 + 65*100 = 6600
(20, 100) 10*20 + 65*100 = 6700
(50, 70) 10*50 + 65*70 = 5050
(50, 40) 10*50 + 65*40 = 3100
(10, 40) 10*10 + 65*40 = 2700
Then, the profit maximization is obtained when 20 masks and 100 ventilators are produced.
-11111111122647373738374848384747374747477347474
Answer:
Because -3-/8 itself is an irrational number. No matter the operation it wil always be irrational
Step-by-step explanation:
Answer:
0.5
Step-by-step explanation:
Solution:-
- The sample mean before treatment, μ1 = 46
- The sample mean after treatment, μ2 = 48
- The sample standard deviation σ = √16 = 4
- For the independent samples T-test, Cohen's d is determined by calculating the mean difference between your two groups, and then dividing the result by the pooled standard deviation.
Cohen's d = 
- Where, the pooled standard deviation (sd_pooled) is calculated using the formula:

- Assuming that population standard deviation and sample standard deviation are same:
SD_1 = SD_2 = σ = 4
- Then,

- The cohen's d can now be evaliated:
Cohen's d = 
It is 9*9 21 times so
9*9*9*9*9*9*9*9*9*9*9*9*9*9*9*9*9*9*9*9*9=
1.09418989e20 is the answer.