92.5 percent of the order was missing because 740 of 800 is 92.5 percent good luck
10x^2-170x is the answer I think you're looking for
Answer:

• let f(x) be m:

• make x the subject of the function:
![{ \rm{8m = {x}^{3} + 128}} \\ \\ { \rm{ {x}^{3} = 8m - 128 }} \\ \\ { \rm{ {x}^{3} = 8(m - 16) }} \\ \\ { \rm{x = \sqrt[3]{8} \times \sqrt[3]{(m - 16)} }} \\ \\ { \rm{x = 2 \sqrt[3]{(m - 16)} }}](https://tex.z-dn.net/?f=%7B%20%5Crm%7B8m%20%3D%20%20%7Bx%7D%5E%7B3%7D%20%20%2B%20128%7D%7D%20%5C%5C%20%20%5C%5C%20%7B%20%5Crm%7B%20%7Bx%7D%5E%7B3%7D%20%3D%208m%20-%20128%20%7D%7D%20%5C%5C%20%20%5C%5C%20%7B%20%5Crm%7B%20%7Bx%7D%5E%7B3%7D%20%3D%208%28m%20-%2016%29%20%7D%7D%20%5C%5C%20%20%5C%5C%20%7B%20%5Crm%7Bx%20%3D%20%20%5Csqrt%5B3%5D%7B8%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B%28m%20-%2016%29%7D%20%7D%7D%20%5C%5C%20%20%5C%5C%20%7B%20%5Crm%7Bx%20%3D%202%20%5Csqrt%5B3%5D%7B%28m%20-%2016%29%7D%20%7D%7D)
• therefore:

Explanation:
A sequence is a list of numbers.
A <em>geometric</em> sequence is a list of numbers such that the ratio of each number to the one before it is the same. The common ratio can be any non-zero value.
<u>Examples</u>
- 1, 2, 4, 8, ... common ratio is 2
- 27, 9, 3, 1, ... common ratio is 1/3
- 6, -24, 96, -384, ... common ratio is -4
___
<u>General Term</u>
Terms of a sequence are numbered starting with 1. We sometimes use the symbol a(n) or an to refer to the n-th term. The general term of a geometric sequence, a(n), can be described by the formula ...
a(n) = a(1)×r^(n-1) . . . . . n-th term of a geometric sequence
where a(1) is the first term, and r is the common ratio. The above example sequences have the formulas ...
- a(n) = 2^(n -1)
- a(n) = 27×(1/3)^(n -1)
- a(n) = 6×(-4)^(n -1)
You can see that these formulas are exponential in nature.
__
<u>Sum of Terms</u>
Another useful formula for geometric sequences is the formula for the sum of n terms.
S(n) = a(1)×(r^n -1)/(r -1) . . . . . sum of n terms of a geometric sequence
When |r| < 1, the sum converges as n approaches infinity. The infinite sum is ...
S = a(1)/(1-r)
X²+14x+49+17=-96+49
(x+7)²=-64, x+7=±8i, x=-7±8i, so x=-7+8i or -7-8i.