The sum of the infinite geometric series is -288.
<h2>Given that</h2>
A finite geometric series with n = 4, a₁ = -144, and r = ½.
<h3>We have to determine</h3>
What is the sum of the infinite geometric series?
<h3>According to the question</h3>
The sum of the infinite is determined by the following formula;
![\rm S\infty = \dfrac{a_1(1-r^n)}{1-r}\\\\](https://tex.z-dn.net/?f=%5Crm%20S%5Cinfty%20%3D%20%5Cdfrac%7Ba_1%281-r%5En%29%7D%7B1-r%7D%5C%5C%5C%5C)
A finite geometric series with n = 4, a₁ = -144, and r = ½.
Substitute all the values in the formula;
![\rm S\infty = \dfrac{a_1(1-r^n)}{1-r}\\\\S\infty = \dfrac{-144 (1- \dfrac{1}{2}^4)}{1-\dfrac{1}{2}}\\\\S \infty = \dfrac{-144 \times \dfrac{15}{16}}{\dfrac{1}{2}}\\\\S \infty = -270](https://tex.z-dn.net/?f=%5Crm%20S%5Cinfty%20%3D%20%5Cdfrac%7Ba_1%281-r%5En%29%7D%7B1-r%7D%5C%5C%5C%5CS%5Cinfty%20%3D%20%5Cdfrac%7B-144%20%281-%20%5Cdfrac%7B1%7D%7B2%7D%5E4%29%7D%7B1-%5Cdfrac%7B1%7D%7B2%7D%7D%5C%5C%5C%5CS%20%5Cinfty%20%3D%20%5Cdfrac%7B-144%20%5Ctimes%20%5Cdfrac%7B15%7D%7B16%7D%7D%7B%5Cdfrac%7B1%7D%7B2%7D%7D%5C%5C%5C%5CS%20%5Cinfty%20%3D%20-270)
Therefore,
The sum of the infinite geometric series is,
![\rm S = \dfrac{a_1}{1-r}\\\\S=\dfrac{-144}{1-\dfrac{1}{2}}\\\\S = \dfrac{-144}{0.5}\\\\S = -288](https://tex.z-dn.net/?f=%5Crm%20S%20%3D%20%5Cdfrac%7Ba_1%7D%7B1-r%7D%5C%5C%5C%5CS%3D%5Cdfrac%7B-144%7D%7B1-%5Cdfrac%7B1%7D%7B2%7D%7D%5C%5C%5C%5CS%20%3D%20%5Cdfrac%7B-144%7D%7B0.5%7D%5C%5C%5C%5CS%20%3D%20-288)
Hence, the sum of the infinite geometric series is -288.
To know more about Geometric Series click the link given below.
brainly.com/question/16037289