Answer:
20, 60, 15
Step-by-step explanation:
Let the third number be n, then
The first number is n + 5 and the second number is 4n
Sum the 3 numbers and equate to 95, that is
n + 5 + 4n + n = 95 ← collect like terms on left side
6n + 5 = 95 ( subtract 5 from both sides )
6n = 90 ( divide both sides by 6 )
n = 15
Thus
The first number is 15 + 5 = 20
The second number is 4 × 15 = 60
The third number is 15
Using statistical concepts, it is found that the number of outcomes that are possible for the complement of the union of Events J and K is of 43.
<h3>What is the union of events J and K?</h3>
It means that at least one of event J or event K is true, hence, it is composed by employees that are either considered support staff(less than 5 years of experience) or employees that have more than five years of experience, combining a total of 7 + 8 = 15 employees.
<h3>What is the complement?</h3>
The total number of outcomes of the union of J and K, plus the complement, add to the total number of 58, hence:
15 + x = 58
x = 43.
The number of outcomes that are possible for the complement of the union of Events J and K is of 43.
More can be learned about complementary events at brainly.com/question/9752956
Answer:
-2, 8/3
Step-by-step explanation:
You can consider the area to be that of a trapezoid with parallel bases f(a) and f(4), and width (4-a). The area of that trapezoid is ...
A = (1/2)(f(a) +f(4))(4 -a)
= (1/2)((3a -1) +(3·4 -1))(4 -a)
= (1/2)(3a +10)(4 -a)
We want this area to be 12, so we can substitute that value for A and solve for "a".
12 = (1/2)(3a +10)(4 -a)
24 = (3a +10)(4 -a) = -3a² +2a +40
3a² -2a -16 = 0 . . . . . . subtract the right side
(3a -8)(a +2) = 0 . . . . . factor
Values of "a" that make these factors zero are ...
a = 8/3, a = -2
The values of "a" that make the area under the curve equal to 12 are -2 and 8/3.
_____
<em>Alternate solution</em>
The attachment shows a solution using the numerical integration function of a graphing calculator. The area under the curve of function f(x) on the interval [a, 4] is the integral of f(x) on that interval. Perhaps confusingly, we have called that area f(a). As we have seen above, the area is a quadratic function of "a". I find it convenient to use a calculator's functions to solve problems like this where possible.
Answer:
They seem correct!
Step-by-step explanation:
Answer:
x
=
13
+
6
=
19
Step-by-step explanation:
this is so simple