Tienes que hallar el mínimo común múltiplo de las 3 cantidades.
18= 2×3²
24= 2³×3
36= 2²×3²
mcm(18,24,36) = 2³×3²=8×9= 72
Eso quier decir que si partieron a la misma hora se encontraran de nuevo en el punto de partida 72 minutos después de la salida.
Las vueltas que habrán realizado será el resultado de dividir 72 entre el tiempo que tardan en dar una vuelta
<span>Mayor: </span> = 4
<span>Mediano: </span> = 3
<span>Pequeño: </span> = 2
Soluciónes:
se vuelven a encontrar a los 72 min de la salida
<span>El mayor dió 4 vueltas, el mediano 3 y el pequeño 2</span>
Answer:
Perimeter of the board
Step-by-step explanation:
That measurement of "the border of her bulletin board" is actually the perimeter of the board.
I have attached the choices given for this question
Answer:measure angle XDC = 90 degrees
Explanation:The term "perpendicular" implies that the angle formed between the two lines is 90 degrees.
These two lines do not have to be equal in length, they just intersect forming a 90-degree angle.
Comparing the explanation with the given choices, we would find that the only correct choice is:
measure angle XDC = 90 degrees
Hope this helps :)
y = ½x +3
Step-by-step explanation:
Slope = m = ½
y-intercept = 3
Substitute values into Slope intercept form :

Where m = slope
b = y intercept

Answer:
16 times
Step-by-step explanation:

If only the radius is changed, the change in volume will be proportionate to the multiplicative factor squared.

Therefore, if the cone is quadrupled (multiplied by 4), the volume of the larger cone will be 4² times greater than the volume of the smaller cone, so <u>16 times greater </u>than the smaller cone.
<h3><u>Proof</u></h3>
Given:
Substituting the given values into the formula:

If the radius is quadrupled:
- radius = 6 × 4 = 24
- height = 9
Substituting the new given values into the formula:

To find the number of times greater the volume of the large cone is than the volume of the smaller cone, divide their volumes:

So the volume of the larger cone is <u>16 times greater</u> than the volume of the smaller cone.