Answer:
Q1: statement 4
Q2: statement 2
Step-by-step explanation:
Question 1
32/48 = 20/PR
32 × PR = 20 × 48
He made an error while cross multiplying
Question 2
Angle 1 = Angle 5
Angle 2 = Angle 4
(Alternate angles)
Angle 3 = Angle 6
(Vertically opposite angles)
Step-by-step explanation:
Well it is simple.If he was able to solve 400 problems in just 25 ' then how long would it take him to solve 100(1/4 of 400)?It would take him 6.25' to solve 100 problems(1/4 of 25).So if he had to do another 500 (because 1000 -500=500) it would take him 31.25' (5*6.25) to complete them.If you have any further questions please contact me.
Yours sincerely,
Manos
Answer:yes
Step-by-step explanation: 73x 10 -73 essentially
Answer:
7
Step-by-step explanation:
Answer:

Step-by-step explanation:
STEP 1:
2/3 + 7/10 = ?
The fractions have unlike denominators. First, find the Least Common Denominator and rewrite the fractions with the common denominator.
LCD(2/3, 7/10) = 30
Multiply both the numerator and denominator of each fraction by the number that makes its denominator equal the LCD. This is basically multiplying each fraction by 1.
*
+
= ?
Complete the multiplication and the equation becomes

The two fractions now have like denominators so you can add the numerators.
Then:

This fraction cannot be reduced.
The fraction 41/30
is the same as
41 divided by 30
Convert to a mixed number using
long division for 41 ÷ 30 = 1R11, so
41/30 = 1 11/30
Therefore:
2/3+7/10= 1 11/30
STEP 2:
41/30 + -2/3
The fractions have unlike denominators. First, find the Least Common Denominator and rewrite the fractions with the common denominator.
LCD(41/30, -2/3) = 30
Multiply both the numerator and denominator of each fraction by the number that makes its denominator equal the LCD. This is basically multiplying each fraction by 1.

The two fractions now have like denominators so you can add the numerators.
Then:

This fraction can be reduced by dividing both the numerator and denominator by the Greatest Common Factor of 21 and 30 using
GCF(21,30) = 3

Therefore:
|