Answer:
When you are "multiplying" exponents, you're really just adding them together. So in the case of (x² ⋅ x⁴), you add the exponents:
2 + 4 = 6
would be the answer.
On the other hand, raising a power to a power, is actually multiplying them. So it would just be:
2 ⋅ 4 = 8
would be the answer.
Solution:
1) Rewrite it in the form {a}^{2}-2ab+{b}^{2}, where a={d}^{2} and b=4
{({d}^{2})}^{2}-2({d}^{2})(4)+{4}^{2}
2) Use Square of Difference: {(a-b)}^{2}={a}^{2}-2ab+{b}^{2}
{({d}^{2}-4)}^{2}
3) Rewrite {d}^{2}-4 in the form {a}^{2}-{b}^{2} , where a=d and b=2
{({d}^{2}-{2}^{2})}^{2}
4) Use Difference of Squares: {a}^{2}-{b}^{2}=(a+b)(a-b)
{((d+2)(d-2))}^{2}
5) Use Multiplication Distributive Property: {(xy)}^{a}={x}^{a}{y}^{a}
{(d+2)}^{2}{(d-2)}^{2}
Done!
Answer:
9x+4
Step-by-step explanation:
remove the parentheses