Answer:
Yes
Step-by-step explanation:
One is in the hundreds and one is in the thousands. 100x10=1000
Answer:
13.5
Step-by-step explanation:
3 cups for 24 muffins
x cups for 108 muffins
x=(108*3)/24
x=13.5
Answer:
Step-by-step explanation:
Answer:
Step-by-step explanation:
The price p, in dollars, of a specific car that is x year old is modeled by the function p(x)=22,255(0.91)^x
a) to determine the cost of a 2 year old car, we will substitute 2 for x in the given function. Therefore
p(2)=22,255(0.91)^2
p(2)=22,255 × 0.8281 = $18673.655
Approximately $18674
b) to determine the cost of a 7 year old car, we will substitute 7 for x in the given function. Therefore
p(7)=22,255(0.91)^7
p(2)=22,255 × 0.51676101936 = 11500.51648579693
Approximately $11501
c) 0.91 indicates exponential decay rate. It is a fixed percentage by which the value of the car decreases every year. It is determined by (1 - rate of decay)
Answer:
Tarea:
Ana compró una cartera cuyo precio es x dólares con el 10% de descuento y un perfume con precio original en dólares con un descuento del 15%. ¿Cuánto gastó Ana en total?
- Solución:
El precio estará en lenguaje algebraico, ya que no nos dan el dato de cuánto costó cada artículo.
• Hallamos el precio de la cartera con el descuento:
El precio original es x, entonces:
Regla de tres:
100 % --------> x
10 % -----------> ?
10 . x : 100 = ?
10x/100 = ?
El 10% del precio de la cartera es 10x/100.
Entonces el precio de la cartera es (x-10x/100).
• Hallamos el precio del perfume con el descuento:
El precio original es y, entonces:
Regla de tres:
100% -------> y
15 % --------> ?
15.y/100
El 15% del perfume es 15y/100.
Entonces el precio del perfume con el descuento es (y-15y/100).
Entonces lo que gastó en total es:
(x - 10x/100) + (y - 15y/100)
Step-by-step explanation:
pls give me brainless
Answer:
sin (x) ≥ 0, between 0° and 180° or 0 and π,
sin(x) ≥ 1/2, between 30° and 150° or π/6 and 5π/6
Step-by-step explanation:
This is how I would do it. Subtract sin(x) from both sides
2
- sin(x) ≥ 0 , then factor out sin(x)
sin(x) [2 sin(x) - 1] ≥0, then set each factor ≥ 0
sin(x) ≥ 0 and 2 sin(x) - 1 ≥ 0
sin (x) ≥ 0, between 0° and 180° or 0 and π
2 sin(x) ≥ 1
sin(x) ≥ 1/2, between 30° and 150° or π/6 and 5π/6