Answer:
The area of the figure is 28 units².
Step-by-step explanation:
Find the area of the full rectangle, ignoring the triangle.

Then, find the area of the triangle:

Finally, subtract:

 
        
             
        
        
        
If you calculate 240/48, you will get 5 without any remainder, which means if you get 5 buses it can exactly take all students?
        
             
        
        
        
Answer: 
The surface of the prism is 84m²
Step-by-step explanation:
You have 4 figures here (two the same triangles)
you need to determine the surface of each and then sum it to one. This will be your final surface.
rectangles:
3*6= 18m²
5*6 = 30m²
4*6 = 24m²
triangles:
You need to determine the square of the triangles from the Heron's formula.
Heron's formula states that the area of a triangle whose sides have lengths a, b, and c is
 ,
,
where s is the semi-perimeter of the triangle; that is,
 .
.
So the permimeter of the triangle is
2p=4+5+3 = 12m
p = 6m
![S = \sqrt{p*(p-a)*(p-b)*(p-c)}  = \sqrt{6*(6-3)*(6-4)*(6-5)}  = \sqrt{6*3*2*1} =\sqrt{36} =6[m^{2} ]](https://tex.z-dn.net/?f=S%20%3D%20%5Csqrt%7Bp%2A%28p-a%29%2A%28p-b%29%2A%28p-c%29%7D%20%20%3D%20%5Csqrt%7B6%2A%286-3%29%2A%286-4%29%2A%286-5%29%7D%20%20%3D%20%5Csqrt%7B6%2A3%2A2%2A1%7D%20%3D%5Csqrt%7B36%7D%20%3D6%5Bm%5E%7B2%7D%20%5D)
So the surface of the prism is a total sum of all surfaces:
P = 18m²+30m²+ 24m²+2*6m² = 84m²
 
        
             
        
        
        
This is a quadratic equation, which is also a polynomial.  Polynomials all have the domain (-infinity, +infinity).
As for the range:  You can see from the graph that the smallest y-value is -2.  Thus, the range is [-2, infinity).
 
        
             
        
        
        
Answer:
k = 13The smallest zero or root is x = -10
Step-by-step explanation:
you can write "x^2" to mean "x squared"
f(x) = x^2+3x-10
f(x+5) = (x+5)^2+3(x+5)-10 ... replace every x with x+5
f(x+5) = (x^2+10x+25)+3(x+5)-10
f(x+5) = x^2+10x+25+3x+15-10
f(x+5) = x^2+13x+30
Compare this with x^2+kx+30 and we see that k = 13
Factor and solve the equation below
x^2+13x+30 = 0
(x+10)(x+3) = 0
x+10 = 0 or x+3 = 0
x = -10 or x = -3
The smallest zero is x = -10 as its the left-most value on a number line.