1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kumpel [21]
3 years ago
7

1. Divide (7x2 - 13x+4) - (x-1 )

Mathematics
1 answer:
stellarik [79]3 years ago
8 0

Answer:7 x 2 − 14 x + 5

Step-by-step explanation:

1 In general, given a{x}^{2}+bx+cax  

2

+bx+c, the factored form is:

a(x-\frac{-b+\sqrt{{b}^{2}-4ac}}{2a})(x-\frac{-b-\sqrt{{b}^{2}-4ac}}{2a})

a(x−  

2a

−b+  

b  

2

−4ac

​

 

​

)(x−  

2a

−b−  

b  

2

−4ac

​

 

​

)

2 In this case, a=7a=7, b=-14b=−14 and c=5c=5.

7(x-\frac{14+\sqrt{{(-14)}^{2}-4\times 7\times 5}}{2\times 7})(x-\frac{14-\sqrt{{(-14)}^{2}-4\times 7\times 5}}{2\times 7})

7(x−  

2×7

14+  

(−14)  

2

−4×7×5

​

 

​

)(x−  

2×7

14−  

(−14)  

2

−4×7×5

​

 

​

)

3 Simplify.

7(x-\frac{14+2\sqrt{14}}{14})(x-\frac{14-2\sqrt{14}}{14})

7(x−  

14

14+2  

14

​

 

​

)(x−  

14

14−2  

14

​

 

​

)

4 Factor out the common term 22.

7(x-\frac{2(7+\sqrt{14})}{14})(x-\frac{14-2\sqrt{14}}{14})

7(x−  

14

2(7+  

14

​

)

​

)(x−  

14

14−2  

14

​

 

​

)

5 Simplify  \frac{2(7+\sqrt{14})}{14}  

14

2(7+  

14

​

)

​

  to  \frac{7+\sqrt{14}}{7}  

7

7+  

14

​

 

​

.

7(x-\frac{7+\sqrt{14}}{7})(x-\frac{14-2\sqrt{14}}{14})

7(x−  

7

7+  

14

​

 

​

)(x−  

14

14−2  

14

​

 

​

)

6 Simplify  \frac{7+\sqrt{14}}{7}  

7

7+  

14

​

 

​

  to  1+\frac{\sqrt{14}}{7}1+  

7

14

​

 

​

.

7(x-(1+\frac{\sqrt{14}}{7}))(x-\frac{14-2\sqrt{14}}{14})

7(x−(1+  

7

14

​

 

​

))(x−  

14

14−2  

14

​

 

​

)

7 Remove parentheses.

7(x-1-\frac{\sqrt{14}}{7})(x-\frac{14-2\sqrt{14}}{14})

7(x−1−  

7

14

​

 

​

)(x−  

14

14−2  

14

​

 

​

)

8 Factor out the common term 22.

7(x-1-\frac{\sqrt{14}}{7})(x-\frac{2(7-\sqrt{14})}{14})

7(x−1−  

7

14

​

 

​

)(x−  

14

2(7−  

14

​

)

​

)

9 Simplify  \frac{2(7-\sqrt{14})}{14}  

14

2(7−  

14

​

)

​

  to  \frac{7-\sqrt{14}}{7}  

7

7−  

14

​

 

​

.

7(x-1-\frac{\sqrt{14}}{7})(x-\frac{7-\sqrt{14}}{7})

7(x−1−  

7

14

​

 

​

)(x−  

7

7−  

14

​

 

​

)

10 Simplify  \frac{7-\sqrt{14}}{7}  

7 7−  14  to  1-\frac{\sqrt{14}}{7}1−  7 14

7(x-1-\frac{\sqrt{14}}{7})(x-(1-\frac{\sqrt{14}}{7}))

7(x−1−  7 /14 )(x−(1−  7 14 )) 11 Remove parentheses.

7(x-1-\frac{\sqrt{14}}{7})(x-1+\frac{\sqrt{14}}{7})

7(x−1−  7/ 14 .7(x−1+ 7 14 )

You might be interested in
A survey was conducted on the salaries of 30 randomly selected households in two different cities.
aliya0001 [1]
I think
the awnser is c 
4 0
3 years ago
2(2-2x)=-3x solve problem
gavmur [86]
<span>2(2-2x)=-3x
4 - 4x = -3x
4 = -3x + 4x 
-3x + 4x = 4
x = 4 ..

Hope it helps !!!</span>
4 0
3 years ago
If anyone can answer this correctly i will give you brainliest
kati45 [8]

Answer:

Im not trying to steal points but which one? I answer it in the comment

3 0
3 years ago
Read 2 more answers
Calculus 2. Please help
Anarel [89]

Answer:

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}}} \, dx = \infty

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Limits

  • Right-Side Limit:                                                                                             \displaystyle  \lim_{x \to c^+} f(x)

Limit Rule [Variable Direct Substitution]:                                                             \displaystyle \lim_{x \to c} x = c

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

U-Solve

Improper Integrals

Exponential Integral Function:                                                                              \displaystyle \int {\frac{e^x}{x}} \, dx = Ei(x) + C

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integral] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \int\limits^1_0 {\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Rewrite [Improper Integral]:                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \int\limits^1_a {\frac{e^{-x^2}}{x} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set:                                                                                                                 \displaystyle u = -x^2
  2. Differentiate [Basic Power Rule]:                                                                 \displaystyle \frac{du}{dx} = -2x
  3. [Derivative] Rewrite:                                                                                     \displaystyle du = -2x \ dx

<em>Rewrite u-substitution to format u-solve.</em>

  1. Rewrite <em>du</em>:                                                                                                     \displaystyle dx = \frac{-1}{2x} \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {-\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Substitute in variables:                                                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {\frac{e^{u}}{-2u} \, du
  3. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}\int\limits^1_a {\frac{e^{u}}{u} \, du
  4. [Integral] Substitute [Exponential Integral Function]:                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(u)] \bigg| \limits^1_a
  5. Back-Substitute:                                                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-x^2)] \bigg| \limits^1_a
  6. Evaluate [Integration Rule - FTC 1]:                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-1) - Ei(a)]
  7. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{Ei(-1) - Ei(a)}{2}
  8. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \infty

∴  \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx  diverges.

Topic: Multivariable Calculus

7 0
3 years ago
I have some red roses and pink roses. I have 14 red roses. I have 8 more pink roses than red ones. How many roses do I have?
MrMuchimi
You have 36 roses because you have eight more pink than red so that means you have 22 pink and 14 red. 22 + 14 = 36
5 0
3 years ago
Other questions:
  • Factor the expression using the GCF. 2+8
    15·1 answer
  • FREE POINTS
    6·1 answer
  • What is the solution to this problem?<br> 4x - 12x =<br><br><br> ALGEBRA!
    10·2 answers
  • under certain conditions, the average cost of a medium sedan in 2012 was $0.66 per mile. how much would it have cost to drive su
    11·1 answer
  • Can someone help me pls
    6·1 answer
  • What fraction of 1 quart are 3 cups
    10·1 answer
  • freddy drew a plan for a rectangular piece of material that he will use for a blanket. three of the vertices are (-2.6, -3.4) ,
    14·1 answer
  • (X+y) + 123 = 180 what is x and y?
    13·1 answer
  • Describe any route that he can travel with, from his guest house to the stadium.​
    8·2 answers
  • Question
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!