Answer:
E = 8.5 * 10^6 V/m
Explanation:
In general we have the following relation between the Electric Field and the Elecric Potential:

Due to the vector nature of the electric filed, we can only know the mean Electric field E across the membrane, and take it out from the integral, that is:
E = (ΔV)/L
Where L is the thickness of the membrane and ΔV is the potential difference.
Therefore:
E = 8.53933*10^6 V/m
rounding to the first tenth:
E = 8.5 * 10^6 V/m
Elliptical orbit.<<<<<<<<<<
Answer:
6 atm.
Explanation:
Let the mass of both be m
Then moles of He = m/ 4
Moles of Ne = m/ 20
mole fraction of He = Moles of He/ Total moles = m/4/ (m/4 + m/20) = 0.25 m/0.3m = 0.83
Pressure of He = Mole fraction×total pressure = 0.83 × 6 atm = 5 atm
<span>B. shining a bright light on the objects
and testing for decomposition </span>
<span>
In explanation, chemical property is a
characteristic of a certain substance came from an outcome due to chemical change
or reaction. In the situation above, more specifically toxicity is involved in
the chemical property/change. Hence, when the object is tested for
decomposition. Like for an example of decomposition simply in metals, rusting. Rusting
a process of degeneration of metals. Here it works the same. Toxicity is how
much damage did a certain entity do to the object. </span>
Answer:
V = 9.682 × 10^(-6) V
Explanation:
Given data
thick = 190 µm
wide = 4.20 mm
magnitude B = 0.78 T
current i = 32 A
to find out
Calculate V
solution
we know v formula that is
V = magnitude× current / (no of charge carriers ×thickness × e
here we know that number of charge carriers/unit volume for copper = 8.47 x 10^28 electrons/m³
so put all value we get
V = magnitude× current / (no of charge carriers ×thickness × e
V = 0.78 × 32 / (8.47 x 10^28 × 190 × 1.602 x 10^(-19)
V = 9.682 × 10^(-6) V