Answer:
410 m
Explanation:
Given:
v₀ = 20.5 m/s
a = 0 m/s²
t = 20 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (20.5 m/s) (20 s) + ½ (0 m/s²) (20 s)²
Δx = 410 m
Answer:
a) 1.3 rad/s
b) 0.722 s
Explanation:
Given
Initial velocity, ω = 0 rad/s
Angular acceleration of the wheel, α = 1.8 rad/s²
using equations of angular motion, we have
θ2 - θ1 = ω(0)[t2 - t1] + 1/2α(t2 - t1)²
where
θ2 - θ1 = 53.2 rad
t2 - t1 = 7s
substituting these in the equation, we have
θ2 - θ1 = ω(0)[t2 - t1] + 1/2α(t2 - t1)²
53.2 =ω(0) * 7 + 1/2 * 1.8 * 7²
53.2 = 7.ω(0) + 1/2 * 1.8 * 49
53.2 = 7.ω(0) + 44.1
7.ω(0) = 53.2 - 44.1
ω(0) = 9.1 / 7
ω(0) = 1.3 rad/s
Using another of the equations of angular motion, we have
ω(0) = ω(i) + α*t1
1.3 = 0 + 1.8 * t1
1.3 = 1.8 * t1
t1 = 1.3/1.8
t1 = 0.722 s
We use a fundamental kinematic equation as follows:
V = Vo + g*t.
<span>Tr = (V-Vo)/g = (0-10)/-10 = 1 s. = </span><span>time to reach max. height </span>
<span>Tf = Tr = 1 s. = Fall time or time to fall back to edge of bldg. </span>
<span>3-Tr-Tf = 3-1-1 = 1 s. Below edge of bldg. </span>
<span>d = Vo*t + 0.5g*t^2. </span>
<span>d = 10*1 + 5*1^2 = 15 m. <---- OPTION C</span>
Answer:
The maximum velocity is 0.377 m/s
Explanation:
Please, the solution is in the Word file attached
Answer:
A) μ = A.m²
B) z = 0.46m
Explanation:
A) Magnetic dipole moment of a coil is given by; μ = NIA
Where;
N is number of turns of coil
I is current in wire
A is area
We are given
N = 300 turns; I = 4A ; d =5cm = 0.05m
Area = πd²/4 = π(0.05)²/4 = 0.001963
So,
μ = 300 x 4 x 0.001963 = 2.36 A.m².
B) The magnetic field at a distance z along the coils perpendicular central axis is parallel to the axis and is given by;
B = (μ_o•μ)/(2π•z³)
Let's make z the subject ;
z = [(μ_o•μ)/(2π•B)] ^(⅓)
Where u_o is vacuum permiability with a value of 4π x 10^(-7) H
Also, B = 5 mT = 5 x 10^(-6) T
Thus,
z = [ (4π x 10^(-7)•2.36)/(2π•5 x 10^(-6))]^(⅓)
Solving this gives; z = 0.46m =