Answer:


Explanation:
Given



See attachment
Required
Determine PCD and CPD
First, we need to calculate CPD
Since DPA is a straight line and CPA = 100;
We have that:
--- angle on a straight theorem
Substitute 100 for CPA

Subtract 100 from both sides


Next, we calculate PCD
We have that:
--alternate angle
In triangle PCD
--- angles in a triangle
Where

So, we have:


Subtract 136 from both sides


<h3>Answer;</h3>
<u>It would make the lens stronger. </u>
<h3>Explanation;</h3>
- The focal length is the distance between the optical center or the center of the lens to the focal point of a convex or concave lens.
- The power of the convex lens is lens ability to undertake refraction or bend light. It is given as the reciprocal of focal length.
- Power of the lens = 1/ f; therefore the smaller the focal length the higher the power and the larger the focal length the lower the power.
- Thus; decreasing the focal length of a convex lens makes the lens stronger.
M = mass of the whale = 1000 kg
m = mass of the seal = 200 kg
V = initial velocity of whale before collision with the seal = 6.0 m/s
v = initial velocity of the seal before collision with the whale = 0 m/s
V' = final velocity of two sea creatures after collision = ?
Using conservation of momentum
M V + m v = (M + m) V'
inserting the above values in the equation
(1000 kg) (6.0 m/s) + (200 kg) (0 m/s ) = (1000 kg + 200 kg) V'
6000 kgm/s + 0 kgm/s = (1200 kg) V'
V' = (6000 kgm/s ) /(1200 kg)
V' = 5 m/s