Answer:
A = 2A + 3B → 5C
Explanation:
The two molecule of A and three molecules of B will react to form the five molecules of C.
2A + 3B → 5C
Other options are incorrect because,
B = A₂ + B₃ → C₅
in this reaction one molecule of A₂ and one molecule of B₃ combine to form one molecule of C₅.
C = 2A + 5B → 3C
in this reaction two molecules of A and five molecules of B combine to form three molecule of C.
D = A₂ + B₃ → C₃
in this reaction one molecule of A₂ and one molecule of B₃ combine to from one molecule of C₃.
The empirical formula for the unknown compound would be: C2H4O (2 molecules of Carbon, 4 molecules of Hydrogen, and 1 molecule of Oxygen)
Answer:
a) The relationship at equivalence is that 1 mole of phosphoric acid will need three moles of sodium hydroxide.
b) 0.0035 mole
c) 0.166 M
Explanation:
Phosphoric acid is tripotic because it has 3 acidic hydrogen atom surrounding it.
The equation of the reaction is expressed as:

1 mole 3 mole
The relationship at equivalence is that 1 mole of phosphoric acid will need three moles of sodium hydroxide.
b) if 10.00 mL of a phosphoric acid solution required the addition of 17.50 mL of a 0.200 M NaOH(aq) to reach the endpoint; Then the molarity of the solution is calculated as follows

10 ml 17.50 ml
(x) M 0.200 M
Molarity = 
= 0.0035 mole
c) What was the molar concentration of phosphoric acid in the original stock solution?
By stoichiometry, converting moles of NaOH to H₃PO₄; we have
= 
= 0.00166 mole of H₃PO₄
Using the molarity equation to determine the molar concentration of phosphoric acid in the original stock solution; we have:
Molar Concentration = 
Molar Concentration = 
Molar Concentration = 0.166 M
∴ the molar concentration of phosphoric acid in the original stock solution = 0.166 M
It changes rocks and minerals by water, ice, acids, salt, and changes in the temperature. Once the rock has been broken down a process named erosion happens, it transports bits of rocks and minerals away