Answer:
35 :
t = 6.25 years
(about 6 years 3 months)
Equation:
t = (1/r)(A/P - 1)
Calculation:
First, converting R percent to r a decimal
r = R/100 = 4%/100 = 0.04 per year,
then, solving our equation
t = (1/0.04)((2500/2000) - 1) = 6.25
t = 6.25 years
The time required to get a total amount, principal plus interest, of $2,500.00 from simple interest on a principal of $2,000.00 at an interest rate of 4% per year is 6.25 years (about 6 years 3 months).
36:
The two distances are the same (out and back), so set them equal.
That is done by having a (rate)(time) equal a (rate)(time).
One time is “x” and the other is “4.8-x.”
One rate is 460 and the other is 500.
460 x = 500 (4.8 -x)
460 x = 2400 - 500x
900 x = 2400
x = 2.5 hours for the slower plane.
4.8- x = 2.3 hours for the faster plane.
Answer:
A and D
because those are the correct ones :)
Given
P(1,-3); P'(-3,1)
Q(3,-2);Q'(-2,3)
R(3,-3);R'(-3,3)
S(2,-4);S'(-4,2)
By observing the relationship between P and P', Q and Q',.... we note that
(x,y)->(y,x) which corresponds to a single reflection about the line y=x.
Alternatively, the same result may be obtained by first reflecting about the x-axis, then a positive (clockwise) rotation of 90 degrees, as follows:
Sx(x,y)->(x,-y) [ reflection about x-axis ]
R90(x,y)->(-y,x) [ positive rotation of 90 degrees ]
combined or composite transformation
R90. Sx (x,y)-> R90(x,-y) -> (y,x)
Similarly similar composite transformation may be obtained by a reflection about the y-axis, followed by a rotation of -90 (or 270) degrees, as follows:
Sy(x,y)->(-x,y)
R270(x,y)->(y,-x)
=>
R270.Sy(x,y)->R270(-x,y)->(y,x)
So in summary, three ways have been presented to make the required transformation, two of which are composite transformations (sequence).
Answer:
The slope of the line is the ratio of the rise to the run, or rise divided by the run.
Step-by-step explanation:
HOPES THIS HELP :)