keeping in mind that anything raised at the 0 power, is 1, with the sole exception of 0 itself.
![\bf ~~~~~~~~~~~~\textit{negative exponents} \\\\ a^{-n} \implies \cfrac{1}{a^n} \qquad \qquad \cfrac{1}{a^n}\implies a^{-n} \qquad \qquad a^n\implies \cfrac{1}{a^{-n}} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \cfrac{(r^{-7}b^{-8})^0}{t^{-4}w}\implies \cfrac{1}{t^{-4}w}\implies \cfrac{1}{t^{-4}}\cdot \cfrac{1}{w}\implies t^4\cdot \cfrac{1}{w}\implies \cfrac{t^4}{w}](https://tex.z-dn.net/?f=%20%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bnegative%20exponents%7D%0A%5C%5C%5C%5C%0Aa%5E%7B-n%7D%20%5Cimplies%20%5Ccfrac%7B1%7D%7Ba%5En%7D%0A%5Cqquad%20%5Cqquad%0A%5Ccfrac%7B1%7D%7Ba%5En%7D%5Cimplies%20a%5E%7B-n%7D%0A%5Cqquad%20%5Cqquad%20a%5En%5Cimplies%20%5Ccfrac%7B1%7D%7Ba%5E%7B-n%7D%7D%0A%5C%5C%5C%5C%5B-0.35em%5D%0A%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%0A%5Ccfrac%7B%28r%5E%7B-7%7Db%5E%7B-8%7D%29%5E0%7D%7Bt%5E%7B-4%7Dw%7D%5Cimplies%20%5Ccfrac%7B1%7D%7Bt%5E%7B-4%7Dw%7D%5Cimplies%20%5Ccfrac%7B1%7D%7Bt%5E%7B-4%7D%7D%5Ccdot%20%5Ccfrac%7B1%7D%7Bw%7D%5Cimplies%20t%5E4%5Ccdot%20%5Ccfrac%7B1%7D%7Bw%7D%5Cimplies%20%5Ccfrac%7Bt%5E4%7D%7Bw%7D%20)
Well, the standard equation is in the form:
ax + bx = c (constant).
Thus, x and b must be isolated together on one side with the constant on the other. The equation which satisfies this is:
A. -2x + y = 5
First add up the total parts in the ratio.
5 + 4 = 9
Now we need to know the value of each part
36 / 9 = 4
The girls has total of 4 parts, therefore we can just multiply the number of parts by the amount in each part
4 x 4 = 16
So there r 16 girls in the class
Step-by-step explanation:
The ratio of the perimeters = the scale
P₂ / P₁ = 6 / 4 = 3 / 2
The ratio of the areas = the square of the scale
A₂ / A₁ = (6 / 4)² = (3 / 2)² = 9 / 4
Same for the triangles:
P₂ / P₁ = 6 / 3 = 2
A₂ / A₁ = (6 / 3)² = (2)² = 4