Answer:
The expected value is 5.
Step-by-step explanation:
- Let X represent the number of tosses until the event described in the question happens.
- Let Y represent the number of tosses with coin A until Heads is obtained.
- Let Z represent the number of tosses with coin B until Heads is obtained.
As we can see, X=Y+Z. Then, by the linearity of the expected value operator, we have that

- We will compute E(Y) and E(Z).
Observe that Y and Z have countable sets of outcomes (1,2,3,....) then,
,
,
Then:
- for each
, the probability of Y=n is given by
(because the first n-1 tosses must be Tails and the n-th must be Heads). Therefore

- For each
, the probability of Z=n is given by
(because the first n-1 tosses must be Tails and the n-th must be Heads). Therefore

Observe that, by the <u>geometric series formula</u>:

Therefore

Finally, E(X)=E(Y)+E(Z)=2+3=5.
Answer:
Solution for y is y = 11 - 6x
For x = -1, the y value is 17
For x = 0, the y value is 11
For x = 3, the y value is -7
Step-by-step explanation:
Solve for y --> y + 6x = 11
y + 6x = 11
-6x -6x
------------------
y = 11 - 6x
Plug -1, 0, and 3 into this equation to find values of y --> x = 11 - y / 6
When x is -1, the y value becomes 17. Secondly, when x is 0, the y value becomes 11. Thirdly, when x is 3, the y value becomes -7.
Answer:
55/9
Step-by-step explanation:
Answer:
El precio de la entrada al cine es de <em>$56</em>
Step-by-step explanation:
Cada uno de los 4 amigos las 2 veces por semana consumen un paquete de palomitas que cuesta: $28 ; entonces debemos multiplicar el costo de las palomitas por las dos veces que las consumen para saber el costo total de las palomitas:
28 x 2 =$56
El ejercicio nos dice que al no comer esas dos veces palomitas pueden ingresar a cine una tercera vez por semana ,lo que significa que al no pagar los $56 en palomitas podrán pagar una tercera entrada,lo que quiere decir que la entrada a cine es de $56.
Entonces podemos hacer la siguiente relación matemática: <em> Precio total de las palomitas dos veces por semana = Precio de la entrada a cine</em>.
Answer:
C
Step-by-step explanation:
If we know that the event will <em>definitely</em> happen, then there is no doubt and no probability that the event will <em>not</em> happen.
This means that the probability is 1, which is the same as 100%.