1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zzz [600]
2 years ago
5

PLS HELP ASAP ILL GIVE BRAINLKEST PLS THANKS PLS

Mathematics
2 answers:
77julia77 [94]2 years ago
6 0

Answer:

I believe number 9 is the middle answer

Step-by-step explanation:

please correct me if I'm wrong

Romashka-Z-Leto [24]2 years ago
5 0

Answer:

first one: y = x + 8

second one: y = x + 10

You might be interested in
A number is chosen at random from 1 to 25 find the probability of selecting a number less than 4​
stira [4]

3/25 I hope I helped

7 0
3 years ago
Read 2 more answers
Help me fast please<br> lskrwe
Elanso [62]

Answer: c = 1.59 * a

Step-by-step explanation:

You got the answer correct.

8 0
3 years ago
Read 2 more answers
Please help me (9-7×3+4)^2
kherson [118]
(9 - 7 × 3 + 4)²
(9 - 21 + 4)²
(9 - 17)²
(-12)²
144
5 0
3 years ago
Use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​
Kitty [74]

First check the characteristic solution: the characteristic equation for this DE is

<em>r</em> ² - 3<em>r</em> + 2 = (<em>r</em> - 2) (<em>r</em> - 1) = 0

with roots <em>r</em> = 2 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>)

For the <em>ansatz</em> particular solution, we might first try

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> + <em>d</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

where <em>ax</em> + <em>b</em> corresponds to the 2<em>x</em> term on the right side, (<em>cx</em> + <em>d</em>) exp(<em>x</em>) corresponds to (1 + 2<em>x</em>) exp(<em>x</em>), and <em>e</em> exp(3<em>x</em>) corresponds to 4 exp(3<em>x</em>).

However, exp(<em>x</em>) is already accounted for in the characteristic solution, we multiply the second group by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

Now take the derivatives of <em>y</em> (part.), substitute them into the DE, and solve for the coefficients.

<em>y'</em> (part.) = <em>a</em> + (2<em>cx</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

… = <em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

<em>y''</em> (part.) = (2<em>cx</em> + 2<em>c</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… = (<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

Substituting every relevant expression and simplifying reduces the equation to

(<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… - 3 [<em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)]

… +2 [(<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)]

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

… … …

2<em>ax</em> - 3<em>a</em> + 2<em>b</em> + (-2<em>cx</em> + 2<em>c</em> - <em>d</em>) exp(<em>x</em>) + 2<em>e</em> exp(3<em>x</em>)

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

<em>x</em> : 2<em>a</em> = 2

1 : -3<em>a</em> + 2<em>b</em> = 0

exp(<em>x</em>) : 2<em>c</em> - <em>d</em> = 1

<em>x</em> exp(<em>x</em>) : -2<em>c</em> = 2

exp(3<em>x</em>) : 2<em>e</em> = 4

Solving the system gives

<em>a</em> = 1, <em>b</em> = 3/2, <em>c</em> = -1, <em>d</em> = -3, <em>e</em> = 2

Then the general solution to the DE is

<em>y(x)</em> = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>) + <em>x</em> + 3/2 - (<em>x</em> ² + 3<em>x</em>) exp(<em>x</em>) + 2 exp(3<em>x</em>)

4 0
2 years ago
4 2/3 divide by 1 2/3
sladkih [1.3K]

Answer:

14/5

Step-by-step explanation:

I'd suggest rewriting both mixed numbers as improper fractions.  Then we'd have:

14/3 and 5/3

Dividing 14/3 by 5/3 is equivalent to dividing 14 by 5, since the denominators are the same (3).

Quotient is 14/5.

3 0
3 years ago
Other questions:
  • The next three terms of the sequence -2, 4, -8, 16 is -32, 60, -128<br> True or False
    14·1 answer
  • PLEASE HELP!!! Which equation applies the associative property of multiplication?
    14·1 answer
  • Use decimals to spray is 0.719 in expanded form
    5·1 answer
  • . 1−|3p+1|=−3! Thank you
    15·1 answer
  • The slope of a line parallel to the graph of 4x-5y=12
    8·1 answer
  • If a real estate agent sold a piece of land for 580000. how much commission did he/she get at 2.5%​
    9·1 answer
  • Norma owns a rectangular lot of land with
    15·1 answer
  • How many distinct diagonals does an undecagon have?
    11·1 answer
  • −16t2+75 Solve for t=2
    14·2 answers
  • There is a stack of 10 cards, each given a different number from 1 to 10. Suppose we select a card randomly from the stack, repl
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!