1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kirza4 [7]
3 years ago
12

Use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​

Mathematics
1 answer:
Kitty [74]3 years ago
4 0

First check the characteristic solution: the characteristic equation for this DE is

<em>r</em> ² - 3<em>r</em> + 2 = (<em>r</em> - 2) (<em>r</em> - 1) = 0

with roots <em>r</em> = 2 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>)

For the <em>ansatz</em> particular solution, we might first try

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> + <em>d</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

where <em>ax</em> + <em>b</em> corresponds to the 2<em>x</em> term on the right side, (<em>cx</em> + <em>d</em>) exp(<em>x</em>) corresponds to (1 + 2<em>x</em>) exp(<em>x</em>), and <em>e</em> exp(3<em>x</em>) corresponds to 4 exp(3<em>x</em>).

However, exp(<em>x</em>) is already accounted for in the characteristic solution, we multiply the second group by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

Now take the derivatives of <em>y</em> (part.), substitute them into the DE, and solve for the coefficients.

<em>y'</em> (part.) = <em>a</em> + (2<em>cx</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

… = <em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

<em>y''</em> (part.) = (2<em>cx</em> + 2<em>c</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… = (<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

Substituting every relevant expression and simplifying reduces the equation to

(<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… - 3 [<em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)]

… +2 [(<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)]

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

… … …

2<em>ax</em> - 3<em>a</em> + 2<em>b</em> + (-2<em>cx</em> + 2<em>c</em> - <em>d</em>) exp(<em>x</em>) + 2<em>e</em> exp(3<em>x</em>)

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

<em>x</em> : 2<em>a</em> = 2

1 : -3<em>a</em> + 2<em>b</em> = 0

exp(<em>x</em>) : 2<em>c</em> - <em>d</em> = 1

<em>x</em> exp(<em>x</em>) : -2<em>c</em> = 2

exp(3<em>x</em>) : 2<em>e</em> = 4

Solving the system gives

<em>a</em> = 1, <em>b</em> = 3/2, <em>c</em> = -1, <em>d</em> = -3, <em>e</em> = 2

Then the general solution to the DE is

<em>y(x)</em> = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>) + <em>x</em> + 3/2 - (<em>x</em> ² + 3<em>x</em>) exp(<em>x</em>) + 2 exp(3<em>x</em>)

You might be interested in
Just the answer please
nordsb [41]

Answer:b is the right choice hopefully dont be mad if it is wrong

Step-by-step explanation:

3 0
3 years ago
Find the amount of tax and the tax rate. Round to nearest hundredth of a percent.
zimovet [89]

since the selling price is 89.83 and the cost of is 76, the tax amount is 89.83 - 76 = 13.83.

if we take 76 to be the 100%, what is 13.83 off of it in percentage?

\begin{array}{ccll} amount&\%\\ \cline{1-2} 76 & 100\\ 13.83& x \end{array} \implies \cfrac{76}{13.83}=\cfrac{100}{x} \\\\\\ 76x=1383\implies x=\cfrac{1383}{76}\implies x\approx 18.20

8 0
2 years ago
Plz help will give brainiest
Scilla [17]

Answer:

I cant see it

Step-by-step explanation:

I dont Know

3 0
2 years ago
What is the slope. please help me this is my last question​
AVprozaik [17]

Answer:

not sure but -1/8

Step-by-step explanation:

8 0
3 years ago
Can someone help? You can either do one or two or both. Thx
Luda [366]

i need help on this too

5 0
3 years ago
Read 2 more answers
Other questions:
  • What is the value of the expression shown below?
    10·2 answers
  • How is the graph of y=2(3)^x+1 translated from the graph of y = 2(3)^x
    14·1 answer
  • Which fraction is less than 1/2? Is it A:3/8 B:5/8 C:5/7 or D:9/16
    6·1 answer
  • The team won 12 of its 30 games and lost the rest. What was the team’s win-loss ratio?
    12·1 answer
  • The least-squares regression equation
    7·1 answer
  • A fair coin was flipped 50 times. It landed on heads 29 times.
    10·1 answer
  • Pre-calc<br> Evaluate f(2) using substitution:<br> f(x) = 2x^3 – 3x^2– 18x-8
    11·1 answer
  • The equation of a line is y = 2x + 1 1. Copy and complete the table belo 1 2 (x, y) Plot the points on graph paper and draw the
    15·1 answer
  • Find the approximate value of a.<br> 4.69 in.<br> 5.09 in.<br> 11.05 in.<br> 12 in<br> 30.71 in.
    9·1 answer
  • Which number sentence is represented by this model?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!