1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kirza4 [7]
3 years ago
12

Use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​

Mathematics
1 answer:
Kitty [74]3 years ago
4 0

First check the characteristic solution: the characteristic equation for this DE is

<em>r</em> ² - 3<em>r</em> + 2 = (<em>r</em> - 2) (<em>r</em> - 1) = 0

with roots <em>r</em> = 2 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>)

For the <em>ansatz</em> particular solution, we might first try

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> + <em>d</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

where <em>ax</em> + <em>b</em> corresponds to the 2<em>x</em> term on the right side, (<em>cx</em> + <em>d</em>) exp(<em>x</em>) corresponds to (1 + 2<em>x</em>) exp(<em>x</em>), and <em>e</em> exp(3<em>x</em>) corresponds to 4 exp(3<em>x</em>).

However, exp(<em>x</em>) is already accounted for in the characteristic solution, we multiply the second group by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

Now take the derivatives of <em>y</em> (part.), substitute them into the DE, and solve for the coefficients.

<em>y'</em> (part.) = <em>a</em> + (2<em>cx</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

… = <em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

<em>y''</em> (part.) = (2<em>cx</em> + 2<em>c</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… = (<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

Substituting every relevant expression and simplifying reduces the equation to

(<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… - 3 [<em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)]

… +2 [(<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)]

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

… … …

2<em>ax</em> - 3<em>a</em> + 2<em>b</em> + (-2<em>cx</em> + 2<em>c</em> - <em>d</em>) exp(<em>x</em>) + 2<em>e</em> exp(3<em>x</em>)

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

<em>x</em> : 2<em>a</em> = 2

1 : -3<em>a</em> + 2<em>b</em> = 0

exp(<em>x</em>) : 2<em>c</em> - <em>d</em> = 1

<em>x</em> exp(<em>x</em>) : -2<em>c</em> = 2

exp(3<em>x</em>) : 2<em>e</em> = 4

Solving the system gives

<em>a</em> = 1, <em>b</em> = 3/2, <em>c</em> = -1, <em>d</em> = -3, <em>e</em> = 2

Then the general solution to the DE is

<em>y(x)</em> = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>) + <em>x</em> + 3/2 - (<em>x</em> ² + 3<em>x</em>) exp(<em>x</em>) + 2 exp(3<em>x</em>)

You might be interested in
For f(x)=√(2x+1) , find the following:
Wittaler [7]

Part a.

The domain is the set of x values such that x \ge -\frac{1}{2}, basically x can be equal to -1/2 or it can be larger than -1/2. To get this answer, you solve 2x+1 \ge 0 for x (subtract 1 from both sides; then divide both sides by 2). I set 2x+1 larger or equal to 0 because we want to avoid the stuff under the square root to be negative.

If you want the domain in interval notation, then it would be \Big[ -\frac{1}{2} , \infty \Big) which means the interval starts at -1/2 (including -1/2) and then it stops at infinity. So technically it never stops and goes on forever to the right.

-----------------------

Part b.

I'm going to use "sqrt" as shorthand for "square root"

f(x) = sqrt(2x+1)

f(10) = sqrt(2*10+1) ... every x replaced by 10

f(10) = sqrt(20+1)

f(10) = sqrt(21)

f(10) = 4.58257569 which is approximate

-----------------------

Part c.

f(x) = sqrt(2x+1)

f(x) = sqrt(2(x)+1)

f(x+2a) = sqrt(2(x+2a)+1) ... every x replaced by (x+2a)

f(x+2a) = sqrt(2x+4a+1) .... distribute

we can't simplify any further

6 0
3 years ago
A standard deck of playing cards has 13 cards in each of four suits: hearts, clubs, diamonds, and spades. Two cards are chosen f
podryga [215]

There are 52 cards in the deck.

Picking a spade would be 13/52 which reduces to 1/4

After the first card is picked there are 51 cards left, picking a club would be 13/51

Picking both would be 1/4 x 13/51 = 13/204

The answer is C.

3 0
3 years ago
Ella and three friends run in a relay that is 14 miles long.Each person runs equal parts of the race.How many miles does each pe
sergeinik [125]
Each Person Runs: 3.5 miles.
14÷4= 3.5.
3 0
3 years ago
Read 2 more answers
What are the rational numbers of -12,0,35,4.85,√12,√36,19/6,-10/11,1.4949949994
klemol [59]
All of those numbers are rational, except the square root of 12.
6 0
3 years ago
It costs a baker 2x + 30 dollars to bake x muffins a day. Each muffin is sold for 5 dollars. How many muffins would the baker ne
Svetradugi [14.3K]

Answer:

X = 10

Step-by-step explanation:

The equation to use would be; 2x + 30 = 5x; because the baker is looking for enough to cover the costs, no more no less.

Then all you have to do is solve for the equation.

2x + 30 = 5x

Subtract 2x from each side

30 = 3x

Divide by 3

10 = x

The baker needs to sell 10 muffins in a day to make enough to cover the revenue.

8 0
3 years ago
Read 2 more answers
Other questions:
  • Find the linear transformation model of log y^=0.6021
    9·1 answer
  • Consider the function f(x)=-5x^2 +2x -8. find the critical point a of the function
    6·1 answer
  • Does a polygon usually have more sides or more angles?
    15·1 answer
  • Pls help me die soon
    11·1 answer
  • The function f(x)=21,500(0.86)^x models the value of a car after x years. What is the yearly depreciation rate of the value of t
    13·1 answer
  • What is the Least Common Multiple for 6 and 8?
    11·1 answer
  • What is the inverse of the function g(x)=x^3/8+16
    7·1 answer
  • What does 6/4 x 2/1 equals?
    6·2 answers
  • The video streaming service that you want to use is represented with the equation below, where y represents the the total monthl
    11·1 answer
  • <img src="https://tex.z-dn.net/?f=9%20%20%5Ctimes%20%20%5Cfrac%7B3%7D%7B4%7D%2012" id="TexFormula1" title="9 \times \frac{3}{4
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!