1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kirza4 [7]
3 years ago
12

Use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​

Mathematics
1 answer:
Kitty [74]3 years ago
4 0

First check the characteristic solution: the characteristic equation for this DE is

<em>r</em> ² - 3<em>r</em> + 2 = (<em>r</em> - 2) (<em>r</em> - 1) = 0

with roots <em>r</em> = 2 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>)

For the <em>ansatz</em> particular solution, we might first try

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> + <em>d</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

where <em>ax</em> + <em>b</em> corresponds to the 2<em>x</em> term on the right side, (<em>cx</em> + <em>d</em>) exp(<em>x</em>) corresponds to (1 + 2<em>x</em>) exp(<em>x</em>), and <em>e</em> exp(3<em>x</em>) corresponds to 4 exp(3<em>x</em>).

However, exp(<em>x</em>) is already accounted for in the characteristic solution, we multiply the second group by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

Now take the derivatives of <em>y</em> (part.), substitute them into the DE, and solve for the coefficients.

<em>y'</em> (part.) = <em>a</em> + (2<em>cx</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

… = <em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

<em>y''</em> (part.) = (2<em>cx</em> + 2<em>c</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… = (<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

Substituting every relevant expression and simplifying reduces the equation to

(<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… - 3 [<em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)]

… +2 [(<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)]

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

… … …

2<em>ax</em> - 3<em>a</em> + 2<em>b</em> + (-2<em>cx</em> + 2<em>c</em> - <em>d</em>) exp(<em>x</em>) + 2<em>e</em> exp(3<em>x</em>)

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

<em>x</em> : 2<em>a</em> = 2

1 : -3<em>a</em> + 2<em>b</em> = 0

exp(<em>x</em>) : 2<em>c</em> - <em>d</em> = 1

<em>x</em> exp(<em>x</em>) : -2<em>c</em> = 2

exp(3<em>x</em>) : 2<em>e</em> = 4

Solving the system gives

<em>a</em> = 1, <em>b</em> = 3/2, <em>c</em> = -1, <em>d</em> = -3, <em>e</em> = 2

Then the general solution to the DE is

<em>y(x)</em> = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>) + <em>x</em> + 3/2 - (<em>x</em> ² + 3<em>x</em>) exp(<em>x</em>) + 2 exp(3<em>x</em>)

You might be interested in
Please help! Correct answer only!
gulaghasi [49]

Answer:

<em>Probability ≈ 0.1071</em>

Step-by-step explanation:

Consider steps below;

Total Possible Outcomes - 8C5,\\\\8! / 5! ( 8 - 5 )!,\\1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 / ( 1 * 2 * 3 * 4 * 5 )( 1 * 2 * 3 ),\\\\6 * 7 * 8 / 6 = Combinations - 56,\\\\

Number Of Outcomes - 6C5,\\\\6! / 5! ( 6 - 5 )!,\\1 * 2 * 3 * 4 * 5 * 6 / ( 1 * 2 * 3 * 4 * 5 ) ( 1 ),\\720 / 120 * 1,\\\\Outcomes - 6

Conclusion ; Solution - 6 / 56 = ( About ) 0.1071\\Hope That Helps!

<em>Solution; Probability ≈ 0.1071</em>

5 0
3 years ago
Kelli swam upstream for some distance in one hour. She then swam downstream the same river for the same distance in only 6 minut
solmaris [256]

Answer:

6.11km/hr

Step-by-step explanation:

Let the speed that Kelli swims be represented by Y

Speed of the river = 5km/hr

Distance = Speed × Time

Kelli swam upstream for some distance in one hour

Swimming upstream takes a negative sign, hence:

1 hour ×( Y - 5) = Distance

Distance = Y - 5

She then swam downstream the same river for the same distance in only 6 minutes

Downstream takes a positive sign

Converting 6 minutes to hour =

60 minutes = 1 hour

6 minutes =

Cross Multiply

6/60 = 1/10 hour

Hence, Distance =

1/10 × (Y + 5)

= Y/10 + 1/2

Equating both equations we have:

Y - 5 = Y/10 + 1/2

Collect like terms

Y - Y/10 = 5 + 1/2

9Y/10 = 5 1/2

9Y/ 10 = 11/2

Cross Multiply

9Y × 2 = 10 × 11

18Y = 110

Y = 110/18

Y = 6.1111111111 km/hr

Therefore, Kelli's can swim as fast as 6.11km/hr still in the water.

4 0
3 years ago
A popular online music store allowed shoppers to listen to an entire album before buying it. Of the people who listened to the w
katrin2010 [14]

Answer:

IDK this stuff is confusing

Step-by-step explanation:

Plz like and follow

4 0
3 years ago
PLEASE HELP !! WHAT IS THE ANSWER TO THIS PROBLEM??
choli [55]

Answer:

The formulas for area of a triangle and area of a square

Step-by-step explanation:

5 0
3 years ago
A dart is tossed and hits the dart board shown. The dart is equally likely to land on any
stiks02 [169]
It would be 4.9%, hope this helps :)
5 0
3 years ago
Other questions:
  • What is 0.3 divided by 0.06
    12·2 answers
  • Would It be unusual if a random sample of 400 adults results in 156 or more having no credit cards
    5·1 answer
  • Shorts are on sale for 10% off. If Kate buys 10 pairs of shorts at s dollars apiece, which expression is NOT equivalent to the s
    9·2 answers
  • Twenty men can cut thirty trees in four hours. If four men leave the job, how many trees will be cut in six hours?​
    13·1 answer
  • These figures are similar. The perimeter and area of one are given. The perimeter of the other is also given. Find its area and
    9·1 answer
  • Calculate the sum of the multiples of 4 from 0 to 1000
    8·1 answer
  • What is the algebraic expression for 3+(1)x<br> 3+(6x-5x)<br> (3+6x)-5x<br> 3+(6-5)x<br> 3+x
    14·1 answer
  • What three things could happen to an organism if its environment changes?
    15·2 answers
  • Hellllllllllllllllllllllp
    8·1 answer
  • PLEASE PLEASE HELP
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!