1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kirza4 [7]
2 years ago
12

Use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​

Mathematics
1 answer:
Kitty [74]2 years ago
4 0

First check the characteristic solution: the characteristic equation for this DE is

<em>r</em> ² - 3<em>r</em> + 2 = (<em>r</em> - 2) (<em>r</em> - 1) = 0

with roots <em>r</em> = 2 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>)

For the <em>ansatz</em> particular solution, we might first try

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> + <em>d</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

where <em>ax</em> + <em>b</em> corresponds to the 2<em>x</em> term on the right side, (<em>cx</em> + <em>d</em>) exp(<em>x</em>) corresponds to (1 + 2<em>x</em>) exp(<em>x</em>), and <em>e</em> exp(3<em>x</em>) corresponds to 4 exp(3<em>x</em>).

However, exp(<em>x</em>) is already accounted for in the characteristic solution, we multiply the second group by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

Now take the derivatives of <em>y</em> (part.), substitute them into the DE, and solve for the coefficients.

<em>y'</em> (part.) = <em>a</em> + (2<em>cx</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

… = <em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

<em>y''</em> (part.) = (2<em>cx</em> + 2<em>c</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… = (<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

Substituting every relevant expression and simplifying reduces the equation to

(<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… - 3 [<em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)]

… +2 [(<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)]

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

… … …

2<em>ax</em> - 3<em>a</em> + 2<em>b</em> + (-2<em>cx</em> + 2<em>c</em> - <em>d</em>) exp(<em>x</em>) + 2<em>e</em> exp(3<em>x</em>)

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

<em>x</em> : 2<em>a</em> = 2

1 : -3<em>a</em> + 2<em>b</em> = 0

exp(<em>x</em>) : 2<em>c</em> - <em>d</em> = 1

<em>x</em> exp(<em>x</em>) : -2<em>c</em> = 2

exp(3<em>x</em>) : 2<em>e</em> = 4

Solving the system gives

<em>a</em> = 1, <em>b</em> = 3/2, <em>c</em> = -1, <em>d</em> = -3, <em>e</em> = 2

Then the general solution to the DE is

<em>y(x)</em> = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>) + <em>x</em> + 3/2 - (<em>x</em> ² + 3<em>x</em>) exp(<em>x</em>) + 2 exp(3<em>x</em>)

You might be interested in
Cindy shoots a bottle rocket straight up into the air such that its height h, in feet, at time t, in seconds, is given by the fu
dezoksy [38]

Answer:

t = [0.493,4.2]

Step-by-step explanation:

The height of the rocket straight up into the air is given by :

h(t)=-16t^2+85t+5

We need to find the interval the rocket be at least 43 feet above the ground.

43\ge -16t^2+85t+5\\\\t\ge 0.493\ and\ t\le 4.82\ s

So, the required interval during which the rocket is at least 43 feet above the ground is [0.493,4.2].

6 0
3 years ago
What is the sum of ? <br><br>I will put a pic if the answer is correct ill mark brainlist
olga2289 [7]

\text{The sum of } 1\frac{7}{10}  \text{ and } 3\frac{3}{5} \text{ is } 5\frac{3}{10}

<em><u>Solution:</u></em>

Given that we have to find the sum of 1\frac{7}{10} \text{ and } 3\frac{3}{5}

<em><u>Let us first convert the mixed fractions to improper fractions</u></em>

Multiply the whole number part by the fraction's denominator.

Add that to the numerator.

Then write the result on top of the denominator

Therefore,

1\frac{7}{10} = \frac{10 \times 1 + 7}{10} = \frac{10+7}{10} = \frac{17}{10}\\\\3\frac{3}{5} = \frac{5 \times 3 + 3}{5} = \frac{18}{5}

Now we can add both the fractions

1\frac{7}{10} + 3\frac{3}{5} = \frac{17}{10} + \frac{18}{5}

Make the denominators same

1\frac{7}{10} + 3\frac{3}{5} = \frac{17}{10} + \frac{18 \times 2}{5 \times 2}\\\\1\frac{7}{10} + 3\frac{3}{5} = \frac{17}{10} + \frac{36}{10}\\\\\text{Add the fractions since the denominator is same }\\\\1\frac{7}{10} + 3\frac{3}{5} = \frac{17+36}{10} = \frac{53}{10}

Now convert the fraction to mixed number

When we divide 53 by 10 , the remainder is 3

Therefore, write 5 as a whole number and and 3 as numerator and 10 as denominator

\frac{53}{10} = 5\frac{3}{10}

Thus the sum of given mixed fraction is 5\frac{3}{10}

6 0
3 years ago
30 gallons to 40 gallons​
Flura [38]

Answer:

10 or 70

Step-by-step explanation:

10= 40-30=10

70=40+30=70

4 0
3 years ago
WILL MARK AS BRAINLIEST IF YOU GET IT RIGHT THANKS
arsen [322]
The side that is parallel to the side that is 15 yards, the one that is 6 yards.
subtract 6 from 15 (15 - 6) and you get?
that is your answer.
3 0
3 years ago
Read 2 more answers
Daisy purchases a gym membership.She pays a signup fee and a monthly fee off 13$.After 4 months, she has paid a total of$69.Use
bulgar [2K]

Answer:

The signup fee is $17

Step-by-step explanation:

we know that

The equation in point slope form is equal to

y-y1=m(x-x1)

where

m is the slope or unit rate of the linear equation

(x1,y1) is a ordered pair of the line

Let

x -----> the number of months

y -----> the total cost of a gym membership

In this problem we have

The slope of unit rate is equal to

m=\$13\ per\ month

The ordered pair is

(x1,y1)=(4,69)

substitute

y-69=13(x-4) ----> equation in point slope form

Convert to slope intercept form

y-69=13x-52

y=13x-52+69

y=13x+17 ---> equation in slope intercept form

The y-intercept is the signup fee (value of y when the value of x is equal to zero)

therefore

The signup fee is $17

4 0
3 years ago
Other questions:
  • Can you help me with the Anabella question pls
    11·2 answers
  • Bess and Gina earn $45 per week for delivering flowers. Bess worked for x weeks and earned an additional total bonus of $20. Gin
    15·1 answer
  • Four times the sum of three and a number is the same as six times the same number. What equation would you write to find the num
    7·1 answer
  • NEED SOME HELPP PLEASE
    6·1 answer
  • PLEASE HELP What is coefficient in the expression:
    6·1 answer
  • Tom walked to school at a steady pace, met his sister, and they walked home at a steady pace. Select the description for this gr
    8·1 answer
  • How do you know in what direction to shade on the line?Explain.
    8·1 answer
  • 10. What is the missing statement in the proof?
    5·1 answer
  • I need help please!
    8·1 answer
  • The sum of two numbers is 8 and the diffrence is 6 what are the two numbers?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!