1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kirza4 [7]
2 years ago
12

Use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​

Mathematics
1 answer:
Kitty [74]2 years ago
4 0

First check the characteristic solution: the characteristic equation for this DE is

<em>r</em> ² - 3<em>r</em> + 2 = (<em>r</em> - 2) (<em>r</em> - 1) = 0

with roots <em>r</em> = 2 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>)

For the <em>ansatz</em> particular solution, we might first try

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> + <em>d</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

where <em>ax</em> + <em>b</em> corresponds to the 2<em>x</em> term on the right side, (<em>cx</em> + <em>d</em>) exp(<em>x</em>) corresponds to (1 + 2<em>x</em>) exp(<em>x</em>), and <em>e</em> exp(3<em>x</em>) corresponds to 4 exp(3<em>x</em>).

However, exp(<em>x</em>) is already accounted for in the characteristic solution, we multiply the second group by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

Now take the derivatives of <em>y</em> (part.), substitute them into the DE, and solve for the coefficients.

<em>y'</em> (part.) = <em>a</em> + (2<em>cx</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

… = <em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

<em>y''</em> (part.) = (2<em>cx</em> + 2<em>c</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… = (<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

Substituting every relevant expression and simplifying reduces the equation to

(<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… - 3 [<em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)]

… +2 [(<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)]

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

… … …

2<em>ax</em> - 3<em>a</em> + 2<em>b</em> + (-2<em>cx</em> + 2<em>c</em> - <em>d</em>) exp(<em>x</em>) + 2<em>e</em> exp(3<em>x</em>)

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

<em>x</em> : 2<em>a</em> = 2

1 : -3<em>a</em> + 2<em>b</em> = 0

exp(<em>x</em>) : 2<em>c</em> - <em>d</em> = 1

<em>x</em> exp(<em>x</em>) : -2<em>c</em> = 2

exp(3<em>x</em>) : 2<em>e</em> = 4

Solving the system gives

<em>a</em> = 1, <em>b</em> = 3/2, <em>c</em> = -1, <em>d</em> = -3, <em>e</em> = 2

Then the general solution to the DE is

<em>y(x)</em> = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>) + <em>x</em> + 3/2 - (<em>x</em> ² + 3<em>x</em>) exp(<em>x</em>) + 2 exp(3<em>x</em>)

You might be interested in
Given the following two statements, is the compound statement valid? p: Two angles are congruent. q: The angles are vertical Com
maw [93]
No, this is not valid.  In the picture below, \angle a is a vertical angle with \angle b.  But \angle a is not \cong \angle b

5 0
3 years ago
A rectangular tank measures 20cm x 30cm x 40cm. You want to fill it by using a cubic container that is 20cm on each side to carr
umka2103 [35]

Answer:

4 trips

Step-by-step explanation:

Given that:

Dimension of rectangular tank :

(20cm * 30cm * 40cm)

Dimension of cubic container used to fill tank = 20cm per side

Volume of tank = (20 * 30 * 40) = 24400 cm³

Volume of cubic container = (20 * 20 * 20) = 8000 cm³

Number of trips it would take :

Volume of tank / volume of container

24400 cm³ / 8000 cm³

= 3.05

Hence, it will take 4 trips

4 0
2 years ago
Find x in This equation.<br> 2x+2=-4(x-5)
san4es73 [151]

Hey there!

2x + 2 = -4(x - 5)

2x + 2 = -4(x) - 4(-5)

2x + 2 = -4x + 20

ADD 4x to BOTH SIDES

2x + 2 + 4x = -4x + 20 + 4x

SIMPLIFY IT!

6x + 2 = 20

SUBTRACT 18 to BOTH SIDES

6x + 2 - 2 = 20 - 2

CANCEL out: 2 - 2 because it give you 0

KEEP: 20 - 2 because it help solve for the x-value

NEW EQUATION: 6x = 20 - 2

SIMPLIFY IT!

6x = 18

DIVIDE 6 to BOTH SIDES

6x/6 = 18/6

CANCEL out: 6/6 because it give you 1

KEE: 18/6 because it help solve for the x-value

NEW EQUATION: x = 18/6

SIMPLIFY IT!

x = 3

Therefore, your answer is: x = 3

Good luck on your assignment and enjoy your day!

~Amphitrite1040:)

6 0
2 years ago
what are the first 5 common multiples of 14 and 20? i’ll mark brainliest for whoever answers first!!!
shutvik [7]

Answer:

14, 28, 42, 56, and 70 are the first 5 common multiples of 14

20, 40, 60, 80, and 100 are the first 4 common multiples of 20

8 0
3 years ago
Read 2 more answers
Find
shepuryov [24]

Answer:

The two odd numbers are 15 and 17

Step-by-step explanation:

Given

<em>Let the odd numbers be represented with x and y</em>

<em>Let x be the greater number</em>

<em></em>x + 5y = 92<em></em>

<em></em>

<em>Required</em>

Find x and y

Since x and y are consecutive odd numbers and x is greater, then

x = y + 2

Substitute y + 2 for x in x + 5y = 92<em></em>

<em></em>y + 2 + 5y = 92<em></em>

<em></em>

Collect Like Terms

<em></em>y + 5y = 92 - 2<em></em>

<em></em>6y = 90<em></em>

Divide both sides by 6

\frac{6y}{6} = \frac{90}{6}

y = \frac{90}{6}

y = 15

Substitute 15 for y in x = y + 2

x = 15 + 2

x = 17

<em>Hence; the two odd numbers are 15 and 17</em>

4 0
3 years ago
Other questions:
  • Greg has a bag of beads that contains 16 black, 20 red, and 4 white beads. He randomly picks a head places it back into the bag
    9·1 answer
  • Laura  earns $ 255 by working 20 hours each week .
    9·1 answer
  • May types 125 words 7.5 minutes. Josh types 65 words in 3mins. Tyler types 400 words in 28 minutes. Order the student from who c
    8·1 answer
  • Which symbol makes the sentence true?
    13·1 answer
  • Simplify the expression 8^5/3
    8·1 answer
  • 6) You can buy 3 apples at the Quick Market for $1.26. You can buy 5 of the same apples at Stop and Save for $1.15. Which place
    14·1 answer
  • For each expression, combine like terms and write an equivalent expression with fever terms.
    14·2 answers
  • You have been asked to analyze the popcorn recipes of three different local theatres in order to figure out which theatre has th
    7·2 answers
  • Question
    12·1 answer
  • What is the correct solution to the equation 1 – (2x + 4) = –4x + 5?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!