You solve by with by altitude! Hope it helps
postive or greater6 7 8 9 10
negative or less 4 3 2 1 0
The probability that both specific qualified applicants will be among the eight selected is given by:

The probability that the two will get apartments on the North side is given by:

The probability that the two will get apartments on the South side is given by:

The events '2 apartments on North side' and '2 apartments on South side' are mutually exclusive. Therefore the probability the two specific qualified applicants will be on the same side of town is 0.107 + 0.357 = 0.464.
Finally, the probability that two specific qualified applicants will be selected for apartments on the same side of town is found from:
Check the picture below.
so, let's notice, is really just a 2x20 rectangle with a quarter of a semicircle with a radius of 11.
![\bf \stackrel{\textit{area of a circle}}{A=\pi r^2}~~ \implies A=\pi 11^2\implies A=121\pi \implies \stackrel{\textit{one quarter of that}}{\boxed{A=\cfrac{121\pi }{4}}} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\underline{\textit{area of the figure}}}{\stackrel{\textit{rectangle's area}}{(2\cdot 20)}+\stackrel{\textit{circle's quart's area}}{\cfrac{121\pi }{4}}\qquad \approx \qquad 135.03\implies \stackrel{\textit{rounded up}}{135}}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Ctextit%7Barea%20of%20a%20circle%7D%7D%7BA%3D%5Cpi%20r%5E2%7D~~%20%5Cimplies%20A%3D%5Cpi%2011%5E2%5Cimplies%20A%3D121%5Cpi%20%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bone%20quarter%20of%20that%7D%7D%7B%5Cboxed%7BA%3D%5Ccfrac%7B121%5Cpi%20%7D%7B4%7D%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Cunderline%7B%5Ctextit%7Barea%20of%20the%20figure%7D%7D%7D%7B%5Cstackrel%7B%5Ctextit%7Brectangle%27s%20area%7D%7D%7B%282%5Ccdot%2020%29%7D%2B%5Cstackrel%7B%5Ctextit%7Bcircle%27s%20quart%27s%20area%7D%7D%7B%5Ccfrac%7B121%5Cpi%20%7D%7B4%7D%7D%5Cqquad%20%5Capprox%20%5Cqquad%20135.03%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Brounded%20up%7D%7D%7B135%7D%7D)
<u>Given</u>:
Given that the graph OACE.
The coordinates of the vertices OACE are O(0,0), A(2m, 2n), C(2p, 2r) and E(2t, 0)
We need to determine the midpoint of EC.
<u>Midpoint of EC:</u>
The midpoint of EC can be determined using the formula,

Substituting the coordinates E(2t,0) and C(2p, 2r), we get;

Simplifying, we get;

Dividing, we get;

Thus, the midpoint of EC is (t + p, r)
Hence, Option A is the correct answer.