Explanation:
1) Based on the octet rule, iodine form an <u>I</u>⁻ ion.
Therefore,
Option E is correct ✔
2) The electronic configuration of the sulfide ion (S²⁻) is :
₁₆S = 1s² 2s² 2p⁶ 3s² 3p⁴ or [Ne] 3s² 3p⁴
₁₈S²⁻ = 1s² 2s² 2p⁶ 3s² 3p⁶ or [Ne] 3s² 3p⁶
Therefore,
Option E is correct ✔
3) valence shell electron of
Halogens = 7
Alkali metal = 1
Alkaline earth metal = 2
Therefore,
Option D is correct ✔
4) Group 2 element lose two electron in order to achieve Noble gas configuration.
And here Group 2 element is Sr
Therefore,
Option B is correct ✔
5) Group 13 element lose three electron in order to achieve Noble gas configuration.
And here Group 13 element is Al
Therefore,
Option B is correct ✔
6) For a given arrangements of ions, the lattice energy increases as ionic radius <u>decreases</u> and as ionic charge <u>increases</u>.
Therefore,
Option A is correct ✔
Answer:
56.97kJ
Explanation:
1 mole of N2 reacts with 73.8kJ
0.772 mole of N2 reacts with xkJ
cross multiply
x= 0.772×73.8
=56.97kJ
Answer:
Cl2 + 2NaBr --> 2NaCl + Br2
Explanation:
This is a single displacement reaction where one side of the ionic compound switches with the other.
So, Cl2 + NaBr ---> NaCl + Br2
This isolates the Bromine and puts the Chlorine in it's place.
Then, balance out the equation like so and you should get
Cl2 + 2NaBr --> 2NaCl + Br2
Answer: Option (c) is the correct answer.
Explanation:
A binary mixture is defined as the mixture which contains two components in the aqueous medium. The two components are solute and solvent.
And, volatility is defined as the ability of a liquid solution or substance to readily change into vapors.
For a binary solution the expression for relative volatility is as follows.
= 
where,
= relative volatility of more volatile component i
= vapor-liquid equilibrium concentration of component i in the vapor phase
= vapor-liquid equilibrium concentration of component i in the liquid phase
= vapor-liquid equilibrium concentration of component j in the vapor phase
= vapor-liquid equilibrium concentration of component j in the liquid phase
So, when
> 1 then separation by distillation is easier in nature.
Thus, we can conclude that in order to separate the components of a binary mixture, the relative volatility should be greater than unity.
Answer:
i think snowball, it sounds weird but its true (i think im sorry if its wrong)
Explanation: