The response would become spontaneous if the value of ΔG° was negative.
According to the estimated value of ΔG°, it is shown that ΔG° value decreases as temperature value increases. The value shifts from being more favorable to being less favorable. It would appear that the value of ΔG° would be negative at a specific temperature, causing the reaction to occur spontaneously.
The reaction is in an equilibrium state if ΔG = 0. If ΔG < 0, the reaction is spontaneous in the direction written. The relationship between terms from the equilibrium is paralleled by the relevance of the sign of a change in the Gibbs free energy.
Learn more about ΔG° here:
brainly.com/question/14512088
#SPJ4
Answer: You multiply and divide when rounding division significant figures
Explanation: Both multiplying and dividing significant figures have the same rule. That rule is, the FINAL ANSWER of a multiplication and division problem should be rounded to the number of significant figures that is the least amount of any figures used in the multiplication or division. Let us demonstrate below.
Answer:
Volume of NCl3 is 3L
Explanation:
Avogadro states: All gases at the same volume under temperature and pressure constant have the same number of moles.
The chemical equation is:
3Cl2(g) + N2(g) → 2NCl3(g)
Where 3 moles of chlorine reacts with 1 mole of nitrogen to produce 2 moles of NCl3.
But using Avogadros law we can say:
3L of chlorine and 1L of nitrogen produce 2L of Nitrogen trichloride.
3L of chlorine and 1L of nitrogen: 4L (The stoichiometric mixture)
That means, volume of NCl3 produced is 3L
Number one is physical change the other one is chemical change
Answer:
Higher frequency
Explanation:
We can imagine a chemical bond between two atoms as if it were two balls connected by a spring.
According to Hooke's Law, the stretching frequency f is

where µ is the reduced mass of the system

The strength of the bond is analogous to k, the force constant of the spring. Then,

Thus, the stronger the bond, the greater the frequency of vibration.