Answer:
(4x - 6)(y + 1)
Step-by-step explanation:
Group them: (4xy + 4x) (-6y - 6)
Take out the greatest common factor for both:
4x(y + 1) -6(y + 1)
Put it together: (4x - 6) (y + 1) (y + 1)
Since there are two (y + 1)'s, you can get rid of one, giving you:
(4x - 6) (y + 1)
Welp. I sure hope you like the Pythagorean theorem...
Top line:
One point is (-2,-2) while the other is (3,-3)
Thus the distance in between is sqrt((3-(-2))^2+(-3-(-2))^2)=sqrt(5^2+(-1)^2)=sqrt(26)
Most right line:
One point is (4,-6) while the other is (3,-3)
Thus the distance in between is sqrt((3-4)^2+(-3-(-6))^2)=sqrt((-1)^2+3^2)=sqrt(10)
Most bottom line:
One point is (1,-6) while the other is (4,-6)
Thus the distance in between is sqrt(4-1)^2+(-6-(-6))^2)=sqrt(3^2+0^2)=sqrt(9)=3
Most bottom left line:
One point is (1,-6) while the other is (-2,-4)
Thus the distance in between is sqrt((1-(-2))^2+(-6-(-4))^2)=sqrt(3^2+(-2)^2)=sqrt(13)
Lastly the most left line:
One point is (-2,-2) while the other is (-2,-4)
Thus the distance in between is sqrt((-2-(-2))^2+(-2-(-4))^2)=sqrt(0^2+(2)^2)=sqrt(4)=2
Thus to find the perimeter, we add up all the sides to get
sqrt(26)+sqrt(10)+3+sqrt(13)+2=16.8668 or B
Given the expression below
To find n
Open the brackets
Collect like terms
Since, the sides are not equal,
Hence, there is no solution
A) the probability it is brown would be 50%; the probability it is yellow or blue would be 35%; the probability it is not green is 95%; the probability it is striped is 0%.
B) the probability of all brown would be 12.5%; the probability that the third one is the first red one drawn is 8.1%; the probability that none are yellow is 61.4%; the probability that at least one is green is 14.3%.
Explanation:
A) The probability that it is brown is the percentage of brown we have. Brown is not listed, so we subtract what we are given from 100%:
100-(15+10+20+5) = 100-(50) = 50%. The probability that one drawn is yellow or blue would be the two percentages added together: 15+20 = 35%. The probability that it is not green would be the percentage of green subtracted from 100: 100-5=95%. Since there are no striped candies listed, the probability is 0%.
B) Since we have an infinite supply of candy, we will treat these as independent events. All 3 being brown is found by taking the probability that one is brown and multiplying it 3 times:
0.5*0.5*0.5 = 0.125 = 12.5%.
To find the probability that the first one that is red is the third one drawn, we take the probability that it is NOT red, 100-10 = 90% = 0.9, for the first two, and the probability that it IS red, 10% = 0.1, for the last:
0.9*0.9*0.1 = 0.081 = 8.1%.
The probability that none are yellow is found by raising the probability that the first one is not yellow, 100-15=85%=0.85, to the third power:
0.85^3 = 0.614 = 61.4%.
The probability that at least one is green is computed by subtracting 1-(probability of no green). We first find the probability that all three are NOT green:
0.95^3 = 0.857375
1-0.857375 = 0.143 = 14.3%.
Answer:
37 apples
Step-by-step explanation:
just add 5 to 32