1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
torisob [31]
2 years ago
14

Last two!!(ty for all the help) :

Mathematics
2 answers:
malfutka [58]2 years ago
7 0
With the b2+b- 12 your gonna want to do this
b2+b-12
b2+4b-3b-12
which is the sum product
after doing that you wanna common the factors from the two pairs. Which is b2+4b-3b-12 then you do you parentheses around b(b+4)-3(b+4) just like that after you do that then you rewrite it in factored form b(b+4)-3(b+4) you then want to rewrite it to this (b-3)(b+4) after that your solution will be (b-3)(b+4) for the first one.
scoray [572]2 years ago
6 0
(B-3)(b+4) is the answer to the solution
You might be interested in
A total of 50 people play darts each players given three darts to try to hit the bull's-eye 21 at the darts hit the bull's-eye t
Yuliya22 [10]

Answer:

42%

Step-by-step explanation:

21 is 42 percentage of fifty

5 0
3 years ago
A music store owner noted that CD sales had dropped 33% from one quarter to the next. If the owner sold 579 units in the first q
Paul [167]

Answer:  387.93 units

Step-by-step explanation:

You have the following information given in the problem above:

- The sales  had dropped 33% from one quarter to the next.

- The owner sold 579 units in the first quarter.

Thefore, to calculate the number of units she sold in the next quarter (which you can call x), you must can apply the following proccedure:

x=579units-(0.33)(579units)

Then the answer is the following:

x=387.93units

4 0
3 years ago
Please help it and show all the work please help
kompoz [17]

Answer:

\sqrt[n]{x} =>  n \ is \ the \ index \ and \ x \ is \ the \ radicand\\\\1. b)  -23^7\\\\2. a) 2\\\\3. b) \sqrt{3} \cdot\sqrt{2} =\sqrt{6}

For  q1 and q2 I have given explanation already.

q3 to multiply radicals the index must be same.

option a . different index. ∛5 √2

option b . same index so √3 √2 = √6

option c. again different index.

7 0
3 years ago
Hi, how do we do this question?​
Nutka1998 [239]

Answer:

\displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

General Formulas and Concepts:

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring

<u>Algebra II</u>

  • Polynomial Long Division

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Integration Constant C
  • Indefinite Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Logarithmic Integration

U-Substitution

Step-by-step explanation:

*Note:

You could use u-solve instead of rewriting the integrand to integrate this integral.

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int {\frac{2x}{3x + 1}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integrand] Rewrite [Polynomial Long Division (See Attachment)]:           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\bigg( \frac{2}{3} - \frac{2}{3(3x + 1)} \bigg)} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\frac{2}{3}} \, dx - \int {\frac{2}{3(3x + 1)}} \, dx
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}\int {} \, dx - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx
  4. [1st Integral] Reverse Power Rule:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 3x + 1
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = 3 \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{3}{3x + 1}} \, dx
  2. [Integral] U-Substitution:                                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{1}{u}} \, du
  3. [Integral] Logarithmic Integration:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|u| + C
  4. Back-Substitute:                                                                                            \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|3x + 1| + C
  5. Factor:                                                                                                           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = -2 \bigg( \frac{1}{9}ln|3x + 1| - \frac{x}{3}  \bigg) + C
  6. Rewrite:                                                                                                         \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
What is 39/4254-390 in division
Svetach [21]
99.07692307692308 it depends on which way you do it
7 1
3 years ago
Read 2 more answers
Other questions:
  • An exterior angle of an isosceles triangle has measure 130°. Find two possible sets of measures for the angles of the triangle.
    10·1 answer
  • If f(x) = 4 – x2 and g(x) = 6x, which expression is equivalent to (g – f)(3)?
    13·1 answer
  • Find the center and radius of a circle if the segment between the points (-2, 10) and (-14, -6) is a diameter.
    5·1 answer
  • If you had 2 pieces of licorice to share among 3 people,how many licorice would each person get?
    6·2 answers
  • a box contains 16 cherry fruit chews, 15 peach fruit chews, and 12 plum fruit chews. Which two flavors are in the ratio 5 to 4
    15·2 answers
  • Work out the shaded area​
    14·2 answers
  • Please help fast! Solve! <br> 2x-y = -7 and y = 2x + 7
    7·2 answers
  • For the image below, state the line of reflection:
    9·2 answers
  • Three pounds of fish food costs $14.97 at the market. What is the unit price
    15·1 answer
  • By which angle measures can the regular pentagon be rotated so it maps onto itself?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!