Answer:
The costs to run the dryer for one year are $ 9.03.
Explanation:
Given that the clothes dryer in my home has a power rating of 2250 Watts, and to dry one typical load of clothes the dryer will run for approximately 45 minutes, and in Ontario, the cost of electricity is $ 0.11 / kWh, to calculate the costs to run the dryer for one year the following calculation must be performed:
1 watt = 0.001 kilowatt
2250/45 = 50 watts per minute
45 x 365 = 16,425 / 60 = 273.75 hours of consumption
50 x 60 = 300 watt = 0.3 kw / h
0.3 x 273.75 = 82.125
82.125 x 0.11 = 9.03
Therefore, the costs to run the dryer for one year are $ 9.03.
Answer:
η=0.19=19% for p=14.7psi
η=0.3=30% for p=1psi
Explanation:
enthalpy before the turbine, state: superheated steam
h1(p=200psi,t=500F)=2951.9KJ/kg
s1=6.8kJ/kgK
Entalpy after the turbine
h2(p=14.7psia, s=6.8)=2469KJ/Kg
Entalpy before the boiler
h3=(p=14.7psia,x=0)=419KJ/Kg
Learn to pronounce
the efficiency for a simple rankine cycle is
η=
η=(2951.9KJ/kg-2469KJ/Kg)/(2951.9KJ/kg-419KJ/Kg)
η=0.19=19%
second part
h2(p=1psia, s=6.8)=2110
h3(p=1psia, x=0)=162.1
η=(2951.9KJ/kg-2110KJ/Kg)/(2951.9KJ/kg-162.1KJ/Kg)
η=0.3=30%
Answer:
The mass flow rate of cooling water required to cool the refrigerant is
.
Explanation:
A condenser is a heat exchanger used to cool working fluid (Refrigerant 134a) at the expense of cooling fluid (water), which works usually at steady state. Let suppose that there is no heat interactions between condenser and surroundings.The condenser is modelled after the First Law of Thermodynamics, which states:



The mass flow rate of the cooling water is now cleared:

Given that
,
,
and
, the mass flow of the cooling water is:


The mass flow rate of cooling water required to cool the refrigerant is
.
Answer:

Explanation:
Steam at outlet is an superheated steam, since
. From steam tables, the specific enthalpy is:

The throttle valve is modelled after the First Law of Thermodynamics:

Hence, specific enthalpy at inlet is:

The quality in the steam line is:

