Answer: no solution
Step-by-step explanation:
They have the same slope which means they are parallel lines that will never cross or intersect. This mean that there is no solution
Width of the miniature model =
inches
Length of the miniature model =
inches
The actual width of the boat = 15 feet
Let us find the actual length of the boat.
Write it in a proportion form.
width of model : length of model : : width of actual : length of actual



Do cross multiplication.



⇒ x = 22
Hence the actual length of the boat is 22 feet.
<u>Answer</u><u> </u><u>:</u><u>-</u>
9(3+√3) feet
<u>Step </u><u>by</u><u> step</u><u> explanation</u><u> </u><u>:</u><u>-</u>
A triangle is given to us. In which one angle is 30° and length of one side is 18ft ( hypontenuse) .So here we can use trignometric Ratios to find values of rest sides. Let's lable the figure as ∆ABC .
Now here the other angle will be = (90°-30°)=60° .
<u>In ∆ABC , </u>
=> sin 30 ° = AB / AC
=> 1/2 = AB / 18ft
=> AB = 18ft/2
=> AB = 9ft .
<u>Again</u><u> </u><u>In</u><u> </u><u>∆</u><u> </u><u>ABC</u><u> </u><u>,</u><u> </u>
=> cos 30° = BC / AC
=> √3/2 = BC / 18ft
=> BC = 18 * √3/2 ft
=> BC = 9√3 ft .
Hence the perimeter will be equal to the sum of all sides = ( 18 + 9 + 9√3 ) ft = 27 + 9√3 ft = 9(3+√3) ft .
<h3>
<u>Hence </u><u>the</u><u> </u><u>perim</u><u>eter</u><u> of</u><u> the</u><u> </u><u>triangular</u><u> </u><u>pathway</u><u> </u><u>shown</u><u> </u><u>is</u><u> </u><u>9</u><u> </u><u>(</u><u> </u><u>3</u><u> </u><u>+</u><u> </u><u>√</u><u>3</u><u> </u><u>)</u><u> </u><u>ft</u><u> </u><u>.</u></h3>
Answer:
The answer to your question is: y ≥ - x + 6 and y ≥ x - 4
Step-by-step explanation:
Look of a pairs of points for each graph
Line 1 Line 2
A(0, 6) B (5, 1) C (7,3) D(5, 1)
m = (1- 6) / (5- 0) m = (1 - 3) / (5 - 7)
m = -5/5 = -1 m = -2 / -2 = 1
Find the line equation for each slope (y - y1) = m (x - x1)
(y - 1) = -1 (x - 5) (y - 1) = 1 (x - 5)
y - 1 = -x + 5 y -1 = x - 5
y = -x + 5 + 1 y = x - 5 + 1
y = -x + 6 y = x - 4
Inequality
y ≥ - x + 6 y ≥ x - 4
Part A
Everything looks good but line 4. You need to put all of the "2h" in parenthesis so the teacher will know you are squaring all of 2h. As you have it right now, you are saying "only square the h, not the 2". Be careful as silly mistakes like this will often cost you points.
============================================================
Part B
It looks like you have the right answer. Though you'll need to use parenthesis to ensure that all of "75t/(2pi)" is under the cube root. I'm assuming you made a typo or forgot to put the parenthesis.
dh/dt = (25)/(2pi*h^2)
2pi*h^2*dh = 25*dt
int[ 2pi*h^2*dh ] = int[ 25*dt ] ... applying integral to both sides
(2/3)pi*h^3 = 25t + C
2pi*h^3 = 3(25t + C)
h^3 = (3(25t + C))/(2pi)
h^3 = (75t + 3C)/(2pi)
h^3 = (75t + C)/(2pi)
h = [ (75t + C)/(2pi) ]^(1/3)
Plug in the initial conditions. If the volume is V = 0 then the height is h = 0 at time t = 0
0 = [ (75(0) + C)/(2pi) ]^(1/3)
0 = [ (0 + C)/(2pi) ]^(1/3)
0 = [ (C)/(2pi) ]^(1/3)
0^3 = (C)/(2pi)
0 = C/(2pi)
C/(2pi) = 0
C = 0*2pi
C = 0
Therefore the h(t) function is...
h(t) = [ (75t + C)/(2pi) ]^(1/3)
h(t) = [ (75t + 0)/(2pi) ]^(1/3)
h(t) = [ (75t)/(2pi) ]^(1/3)
Answer:
h(t) = [ (75t)/(2pi) ]^(1/3)
============================================================
Part C
Your answer is correct.
Below is an alternative way to find the same answer
--------------------------------------
Plug in the given height; solve for t
h(t) = [ (75t)/(2pi) ]^(1/3)
8 = [ (75t)/(2pi) ]^(1/3)
8^3 = (75t)/(2pi)
512 = (75t)/(2pi)
(75t)/(2pi) = 512
75t = 512*2pi
75t = 1024pi
t = 1024pi/75
At this time value, the height of the water is 8 feet
Set up the radius r(t) function
r = 2*h
r = 2*h(t)
r = 2*[ (75t)/(2pi) ]^(1/3) .... using the answer from part B
Differentiate that r(t) function with respect to t
r = 2*[ (75t)/(2pi) ]^(1/3)
dr/dt = 2*(1/3)*[ (75t)/(2pi) ]^(1/3-1)*d/dt[(75t)/(2pi)]
dr/dt = (2/3)*[ (75t)/(2pi) ]^(-2/3)*(75/(2pi))
dr/dt = (2/3)*(75/(2pi))*[ (75t)/(2pi) ]^(-2/3)
dr/dt = (25/pi)*[ (75t)/(2pi) ]^(-2/3)
Plug in t = 1024pi/75 found earlier above
dr/dt = (25/pi)*[ (75t)/(2pi) ]^(-2/3)
dr/dt = (25/pi)*[ (75(1024pi/75))/(2pi) ]^(-2/3)
dr/dt = (25/pi)*[ (1024pi)/(2pi) ]^(-2/3)
dr/dt = (25/pi)*(1/64)
dr/dt = 25/(64pi)
getting the same answer as before
----------------------------
Thinking back as I finish up, your method is definitely shorter and more efficient. So I prefer your method, which is effectively this:
r = 2h, dr/dh = 2
dh/dt = (25)/(2pi*h^2) ... from part A
dr/dt = dr/dh*dh/dt ... chain rule
dr/dt = 2*((25)/(2pi*h^2))
dr/dt = ((25)/(pi*h^2))
dr/dt = ((25)/(pi*8^2)) ... plugging in h = 8
dr/dt = (25)/(64pi)
which is what you stated in your screenshot (though I added on the line dr/dt = dr/dh*dh/dt to show the chain rule in action)