Answer:
32.33 <= m
Step-by-step explanation:
Since we are dealing with below sea level our initial starting point and max level will both be negative values, while our descending rate will also be negative because we are going down. Using the values provided we can create the following inequality...
-400 <= -12m - 12
Now we can solve the inequality to find the max number of minutes that the submarine can descend.
-400 <= -12m - 12 ... add 12 on both sides
-388 <= -12m ... divide both sides by -12
32.33 <= m
Given the table below comparing the marginal benefit Lucinda gets from
Kewpie dolls and Beanie Babies.
![\begin{tabular} {|p {2cm}|p {2cm}|p {2cm}|p {2cm}|} \multicolumn {4} {|c|} {Lucinda's Kewpie Doll and Beanie Baby Marginal Benefits}\\[1ex] \multicolumn {2} {|c|} {Kewpie Dolls}&\multicolumn {2} {|c|} {Beanie Babies}\\[1ex] 1&\$15.00&1&\$12.00\\ 2&\$12.00&2&\$10.00\\ 3&\$9.00&3&\$8.00\\ 4&\$6.00&4&\$6.00\\ 5&\$3.00&5&\$4.00\\ 6&\$0.00&6&\$2.00\\ \end{tabular}](https://tex.z-dn.net/?f=%5Cbegin%7Btabular%7D%0A%7B%7Cp%20%7B2cm%7D%7Cp%20%7B2cm%7D%7Cp%20%7B2cm%7D%7Cp%20%7B2cm%7D%7C%7D%0A%5Cmulticolumn%20%7B4%7D%20%7B%7Cc%7C%7D%20%7BLucinda%27s%20Kewpie%20Doll%20and%20Beanie%20Baby%20Marginal%20Benefits%7D%5C%5C%5B1ex%5D%0A%5Cmulticolumn%20%7B2%7D%20%7B%7Cc%7C%7D%20%7BKewpie%20Dolls%7D%26%5Cmulticolumn%20%7B2%7D%20%7B%7Cc%7C%7D%20%7BBeanie%20Babies%7D%5C%5C%5B1ex%5D%0A1%26%5C%2415.00%261%26%5C%2412.00%5C%5C%0A2%26%5C%2412.00%262%26%5C%2410.00%5C%5C%0A3%26%5C%249.00%263%26%5C%248.00%5C%5C%0A4%26%5C%246.00%264%26%5C%246.00%5C%5C%0A5%26%5C%243.00%265%26%5C%244.00%5C%5C%0A6%26%5C%240.00%266%26%5C%242.00%5C%5C%0A%5Cend%7Btabular%7D)
<span>If
lucinda has only $18 to spend and the price of kewpie dolls and the
price of beanie babies are both $6,
Lucinda will buy the combination for which marginal benefit is the same.
Therefore, Lucinda will buy </span><span>2 kewpie dolls and 1 beanie baby,</span><span>
if she were rational.</span>
Answer: B iis the answer
Step-by-step explanation:
If y = x^2 + 2x and y = 3x + 20
<span>Then </span>
<span>x^2 + 2x = 3x + 20 </span>
<span>x^2 - x - 20 = 0 </span>
<span>(x - 5)(x + 4) = 0 </span>
<span>x = 5, - 4 </span>
<span>For x = 5, y = 3(5) + 20 = 35 </span>
<span>For x = - 4, y = 3(-4) + 20 = 8 </span>
<span>(5, 35), (-4, 8)</span>
The area of the garden enclosed by the fencing is
A(x, y) = xy
and is constrained by its perimeter,
P = x + 2y = 200
Solve for x in the constraint equation:
x = 200 - 2y
Substitute this into the area function to get a function of one variable:
A(200 - 2y, y) = A(y) = 200y - 2y²
Differentiate A with respect to y :
dA/dy = 200 - 4y
Find the critical points of A :
200 - 4y = 0 ⇒ 4y = 200 ⇒ y = 50
Compute the second derivative of A:
d²A/dy² = -4 < 0
Since the second derivative is always negative, the critical point is a local maximum.
If y = 50, then x = 200 - 2•50 = 100. So the farmer can maximize the garden area by building a (100 ft) × (50 ft) fence.