1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
12345 [234]
3 years ago
11

I have sum free ...... point s for yalll​

Mathematics
2 answers:
Valentin [98]3 years ago
5 0

Answer:

Thx man

Step-by-step explanation:

emmasim [6.3K]3 years ago
3 0

Answer:

Step-by-step explanation:

if you need help let me know

You might be interested in
50× 3/8 how to reduce answer to lowest te
hoa [83]

The lowest term is \frac{75}{4}.

Solution:

Given expression is 50\times\frac{3}{8}

<u>To reduce this term to the lowest term:</u>

$50\times\frac{3}{8}=\frac{50}{1}\times\frac{3}{8}

Multiply the numerator and denominator.

$50\times\frac{3}{8}=\frac{150}{8}

Now, divide the numerator and denominator by the greatest common factor.

Here 150 and 8 both have common factor 2.

So, divide numerator and denominator by 2.

           $=\frac{150\div2}{8\div2}

           $=\frac{75}{4}

$50\times\frac{3}{8}=\frac{75}{4}

Hence the lowest term is \frac{75}{4}.

4 0
3 years ago
Draw a number line to show that 2/8 and 1/4 are equivalent fraction
solniwko [45]
1/4 2/8 3/12 4/16 5/20 6/24
8 0
3 years ago
Find the point, M, that divides segment AB into a ratio of 5:2 if A is at (1, 2) and B is at (8, 16).
d1i1m1o1n [39]
Since M divides segment AB into a ratio of 5:2, we can say that M is 5/(5+2) of the length of AB. Therefore 5/7 × AB.
distance of AB = d
5/7×(x2 - x1) for the x and 5/7×(y2 - y1) for the y
5/7×(8 - 1) = 5/7 (7) = 5 for the x
and 5/7×(16 - 2) = 5/7 (14) = 10 for the y
But remember the line AB starts at A (1, 2),
so add 1 to the x: 5+1 = 6
and add 2 to the y: 10+2 = 12
Therefore the point M lies exactly at...
A) (6, 12)


4 0
3 years ago
In circle K shown below, points B, C, D, and E lie on the circle with secants HBD and HCE drawn. Prove:
Alexxx [7]

Answer:

By exterior angle theorem, we have;

∠DBE = ∠H + ∠HEB = ∠ECD = ∠H + ∠HDC

∴ ∠H + ∠HEB = ∠H + ∠HDC

By addition property of equality, we have

∠HEB = ∠HDC

∠H = ∠H by reflexive property

∴ ΔHCD ~ ΔHEB by Angle Angle AA similarity postulate

∴ HE/HD = EB/DC, by the definition of similarity

Therefore, by cross multiplication, we have;

HE × DC = EB × HD

Therefore, by commutative property of multiplication, we have;

HE × DC = HD × EB

Step-by-step explanation:

3 0
3 years ago
Se quiere construir un muro de 4 m de alto, 12 m de largo y 10 cm de espesor. ¿Cuántos ladrillos de 8 cm de alto, 20 cm de largo
Llana [10]

Answer:

3000

Step-by-step explanation:

Let's start by finding the volume of the wall. The volumen of the wall can be considered as the volume of a rectangular prism. The volume of a rectangular prism is given by:

V_w=w*l*h\\\\Where:\\\\w=Width=10cm=0.1m\\l=Length=12m\\h=Height=4m

So the volume of the wall is:

V_w=0.1*12*4=4.8m^3

Now, we can find the volume of the brick using the same method since a brick can be considered as a rectangular prism as well:

V_b=w*l*h\\\\For\hspace{3}the\hspace{3}brick\\\\w=10cm=0.1m\\l=20cm=0.2m\\h=8cm=0.08m

Hence:

V_b=(0.1)*(0.2)*(0.08)=0.0016m^3

In order to know how many bricks are required to build the wall, we just need to fill the wall volume with the number of bricks of this volume. So:

V_w=nV_b\\\\Where\\\\n=Number\hspace{3}of\hspace{3}bricks

Solving for n:

n=\frac{V_w}{V_b} =\frac{4.8}{0.0016} =3000

Therefore, we need 3000 bricks to build that wall.

Translation:

Comencemos por encontrar el volumen del muro. El volumen del muro puede considerarse como el volumen de un prisma rectangular. El volumen de un prisma rectangular viene dado por:

V_w=w*l*h\\\\Donde:\\\\w=Espesor=10cm=0.1m\\l=Largo=12m\\h=Alto=4m

Entonces el volumen del muro es:

V_w=0.1*12*4=4.8m^3

Ahora, podemos encontrar el volumen del ladrillo utilizando el mismo método, ya que un ladrillo también puede considerarse como un prisma rectangular:

V_b=w*l*h\\\\Para\hspace{3}el\hspace{3}ladrillo\\\\w=10cm=0.1m\\l=20cm=0.2m\\h=8cm=0.08m

Por lo tanto:

V_b=(0.1)*(0.2)*(0.08)=0.0016m^3

Para saber cuántos ladrillos se requieren para construir el muro, solo necesitamos llenar el volumen del muro con la cantidad de ladrillos de este volumen. Entonces:

V_w=nV_b\\\\Donde\\\\n=Numero\hspace{3}de\hspace{3}ladrillos

Resolviendo para n:

n=\frac{V_w}{V_b} =\frac{4.8}{0.0016} =3000

Por lo tanto, necesitamos 3000 ladrillos para construir ese muro.

4 0
4 years ago
Other questions:
  • pet store has 18 hamsters in each cage. how many hamsters are there in six cages? use and area model to solve
    7·2 answers
  • Plz Help me, show you work plz, #17 
    11·1 answer
  • Solve the equation <img src="https://tex.z-dn.net/?f=%2812%20x%5E%7B5%7Dy%2B12%20x%5E%7B6%7Dy-3%20y%5E%7B5%7D%20-18x%20y%5E%7B5%
    12·1 answer
  • My brother needs help with his math homework and I don't understand this?need help.
    15·1 answer
  • You are dealt one card from a ​52-card deck. find the probability that you are dealt a numbered card or a heart. ​ (note: a numb
    7·1 answer
  • What type of number is this?
    8·1 answer
  • Can anyone please help me!?<br> dont answer nonsense for points plz or i will report
    10·1 answer
  • A line has a slope of 5/6 and a y-intercept of -3.
    15·2 answers
  • Find the range of the function<br> f (x) = (x + 1)2.
    5·1 answer
  • Work out this question pls
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!