Idkhzslkkxkfof?&$ask a another girl for that answer
Lets write this out:-
2.4 + 0.8 = ________ + 1.21 = ______ + 1.78 = ______ - 5.14 = _____
So to solve d blanks we will do d following:-
2.4 + 0.8 = 3.2
Now lets write this out AGAIN.
2.4 + 0.8 = 3.2 + 1.21 = ______ + 1.78 = ______ - 5.14 = ____
Now lets solve again:-
3.2 + 1.21 = 4.41
Now lets write this out AGAIN.
2.4 + 0.8 = 3.2 + 1.21 = 4.41 + 1.78 = ______ - 5.14 = ____
Now lets solve again:-
4.41 + 1.78 = 6.19
Now lets write this out AGAIN.
2.4 + 0.8 = 3.2 + 1.21 = 4.41 + 1.78 = 6.19 - 5.14 = ____
Now lets solve again:-
6.19 - 5.14 = 1.05
Now lets write this out AGAIN.
2.4 + 0.8 = 3.2 + 1.21 = 4.41 + 1.78 = 6.19 - 5.14 = 1.05
So, 2.4 + 0.8 = 3.2 + 1.21 = 4.41 + 1.78 = 6.19 - 5.14 = 1.05
Hope I helped ya!! xD
Answer:
1) yes
2) no
3. yes
Step-by-step explanation:
(plz make me brainliest)
Answer:
Test is Left tailed test
Parameter tested is standard deviation
Step-by-step explanation:
We are given the hypothesis as;
Null hypothesis; H0: σ = 8.6
Alternative hypothesis; H1: σ < 8.6
Where;σ is a constant generally known in statistics as the standard deviation.
Now, it's the alternative hypothesis that will let us know whether this is left tailed, right tailed or two tailed.
Alternative hypothesis says σ < 8.6.
This means that the values of σ that satisfy this hypothesis are less than 8.6 and thus are on the left hand side of 8.6 on a number line. Thus, the shaded region in a normal distribution curve will be on the left.
Thus, it's a left tailed test
By geometric and algebraic properties the angles BTC, TBC and TBC from the triangle BTC are 128°, 26° and 26°, respectively.
<h3>How to determine the angles of a triangle inscribed in a circle</h3>
According to the figure, the triangle BTC is inscribed in the circle by two points (B, C). In this question we must make use of concepts of diameter and triangles to determine all missing angles.
Since AT and BT represent the radii of the circle, then the triangle ABT is an <em>isosceles</em> triangle. By geometry we know that the sum of <em>internal</em> angles of a triangle equals 180°. Hence, the measure of the angles A and B is 64°.
The angles ATB and BTC are <em>supplmentary</em> and therefore the measure of the latter is 128°. The triangle BTC is also an <em>isosceles</em> triangle and the measure of angles TBC and TCB is 26°.
By geometric and algebraic properties the angles BTC, TBC and TBC from the triangle BTC are 128°, 26° and 26°, respectively.
To learn more on triangles, we kindly invite to check this verified question: brainly.com/question/2773823