Range of y = -3 cosx -1 is -4 < y < 2
Answer:
-8a(a+3b)
Step-by-step explanation:
(2a+6b)(6b−2a)−(2a+6b)^2
(2a+6b) {(6b−2a)−(2a+6b)(2a+6b)}
2(a+3b) (6b-2a-2a-6b)
2(a+3b) (-4a)
-2(a+3b) x 4a
-2 x 4a (a+3b)
-8a(a+3b)
I'm reading this as

with

.
The value of the integral will be independent of the path if we can find a function

that satisfies the gradient equation above.
You have

Integrate

with respect to

. You get


Differentiate with respect to

. You get
![\dfrac{\partial f}{\partial y}=\dfrac{\partial}{\partial y}[x^2e^{-y}+g(y)]](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20y%7D%3D%5Cdfrac%7B%5Cpartial%7D%7B%5Cpartial%20y%7D%5Bx%5E2e%5E%7B-y%7D%2Bg%28y%29%5D)


Integrate both sides with respect to

to arrive at



So you have

The gradient is continuous for all

, so the fundamental theorem of calculus applies, and so the value of the integral, regardless of the path taken, is
Answer:
9.19m
Step-by-step explanation:
Check attachment
Answer:

Step-by-step explanation:
Intersection represents the elements present in both sets.
Best Regards!