1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sp2606 [1]
2 years ago
5

HELP ME ASAP PWEASS

Mathematics
2 answers:
leva [86]2 years ago
5 0

Answer:

number 4

Step-by-step explanation:

the answer is  Line segments M′N′ and O′P′ do not intersect and are closer together than MN and OP.

Nutka1998 [239]2 years ago
3 0

Answer:

number 2

Step-by-step explanation:

hoped that helped:P

You might be interested in
Which term best describes the angle below?
Masja [62]
Acute because it is less than 90 degrees
4 0
4 years ago
Read 2 more answers
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
3 years ago
Henry can write 5 pages of his novel in 3 hours.
Readme [11.4K]
Cool
what is the questoin ? xD

5 0
3 years ago
A worker in a silver mine descends 70 feet. Use an integer to represent the change in the​ worker's position.
kherson [118]

Answer:

-70

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
The table shows the relationship between the number of minutes that a hose
Marina86 [1]

Answer:

(C)The relationship is multiplicative  because the number of gallons can be

found by multiplying the number of  minutes by 8.

Step-by-step explanation:

Given the table below which shows the relationship between the number of minutes that a hose  has been on and the number of gallons of water that have been added to a  plastic pool.

\left|\begin{array}{c|c}$Minutes Hose On&$Gallons of Water in Pool\\-------&-------\\0&0\\5&40\\10&80\\15&120\\20&160\end{array}\right|

We can see that if we multiply the first column by 8, we will obtain the second column. Therefore the relationship is multiplicative because the number of gallons can be  found by multiplying the number of  minutes by 8.

The correct option is C.

8 0
3 years ago
Other questions:
  • PLeasE please help me!
    14·2 answers
  • What is the exact remainder of 209÷47
    14·2 answers
  • A school manager to choose only 9% as much paper as the previous year in 2000 they use 700000 sheets
    14·1 answer
  • Use an area model to solve. 1 3/4 X 2 1/2
    8·1 answer
  • Math Problem, Sorry, But thank you to whoever helps.
    7·2 answers
  • What complex number has an absolute value of 5?
    13·1 answer
  • Solve the simultaneous equations y=x-2 and y=3x+5
    14·1 answer
  • At Barlow school, 4/9 of the 873 students are boys. At Willow school, 2/3 of the 630 students are girls
    7·1 answer
  • What day is Memorial Day in 2021?
    7·2 answers
  • 1. What is the domain and range of the<br> graph shown?<br> -10 S<br> 2799<br> -24
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!