The consecutive number = 1,2 or 7,8 not 5,8 etc
whole number = 1,6,100
square root of 60 = 7.746
so, if you want to know two consecutive whole numbers b/w swrt of 60
that would be
7 less than 7.6 less than 8
Answer:
x = 5
y = 4
Step-by-step explanation:
just substitute the value of one variable into the other
-x +y = -1
or y = -1 +x <-------- (i just added x to the right side)
now u know what y is equal to, just substitute that value into the first equation
2x - (-1+x) = 6 <-------- instead of y, i put the value of y from the 2 equation
NOW SOLVE FOR X!
2x +1 -x = 6
x + 1 = 6
x = 5
now solve for y since you have the value of x
y = -1 + x
or y = -1 + 5
y = 4
Volume
of a rectangular box = length x width x height<span>
From the problem statement,
length = 60 - 2x
width = 10 - 2x
height = x</span>
<span>
where x is the height of the box or the side of the equal squares from each
corner and turning up the sides
V = (60-2x) (10-2x) (x)
V = (60 - 2x) (10x - 2x^2)
V = 600x - 120x^2 -20x^2 + 4x^3
V = 4x^3 - 100x^2 + 600x
To maximize the volume, we differentiate the expression of the volume and
equate it to zero.
V = </span>4x^3 - 100x^2 + 600x<span>
dV/dx = 12x^2 - 200x + 600
12x^2 - 200x + 600 = 0</span>
<span>x^2 - 50/3x + 50 = 0
Solving for x,
x1 = 12.74 ; Volume = -315.56 (cannot be negative)
x2 = 3.92 ;
Volume = 1056.31So, the answer would be that the maximum volume would be 1056.31 cm^3.</span><span>
</span>
The probability of event A and B to both occur is denoted as P(A ∩ B) = P(A) P(B|A). It is the probability that Event A occurs times the probability that Event B occurs, given that Event A has occurred.
So, to find the probability that you will be assigned a poem by Shakespeare and by Tennyson, let Event A = the event that a Shakespeare poem will be assigned to you; and let Event B = the event that the second poem that will be assigned to you will be by Tennyson.
At first, there are a total of 13 poems that would be randomly assigned in your class. There are 4 poems by Shakespeare, thus P(A) is 4/13.
After the first selection, there would be 13 poems left. Therefore, P(B|A) = 2/12
Based on the rule of multiplication,
P(A ∩ B) = P(A) P(B|A)P(A ∩ B) = 4/13 * 2/12
P(A ∩ B) = 8/156
P(A ∩ B) = 2/39
The probability that you will be assigned a poem by Shakespeare, then a poem by Tennyson is 2/39 or 5.13%.