<u>Answer:</u> The tree was burned 16846.4 years ago to make the ancient charcoal
<u>Explanation:</u>
The equation used to calculate rate constant from given half life for first order kinetics:

where,
= half life of the reaction = 5715 years
Putting values in above equation, we get:

Rate law expression for first order kinetics is given by the equation:
![k=\frac{2.303}{t}\log\frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = 
t = time taken for decay process = ? yr
= initial amount of the sample = 100 grams
[A] = amount left after decay process = 13 grams
Putting values in above equation, we get:

Hence, the tree was burned 16846.4 years ago to make the ancient charcoal
Because if they are submerged in the solvent, they would dissolve! This would prevent them from seperating and not allow you to actually record anything
1. <em>Increasing the concentration of one or more reactants will often increase the rate of reaction. This occurs because a higher concentration of a reactant will lead to more collisions of that reactant in a specific time period. </em>
<em>2. Physical state of the reactants and surface area.</em>
Answer:
0.9 moles of water
Explanation:
Use mole ratios:
5 : 6
divide by 5 on both sides
1 : 1.2
multiply by 0.75 on both sides
0.75 : 0.9
So the result is 0.9 moles of water
(Please correct me if I'm wrong)