Answer:
See explanation
Explanation:
a. I can conclusively tell if the crown was made of gold by measuring its density. First the mass of the crown is measured on a weighing balance. The crown is now put into a given volume of water and the volume of water displaced is accurately measured. The density of the crown is computed as mass/volume of fluid displaced. If the density of the crown is 19.3 g/mL, then it is made of solid gold.
b) When less valuable metals such as bronze or copper is mixed with gold in the crown, the density of the crown decreases and the crown becomes more brittle.
c) An object will float in a liquid when the density of the object is less than the density of the liquid. Hence the tendency of an object to float in a liquid depends on the density of the object and the density of the liquid.
d) Even though i do not know the results from your experiment but as regards the decision as to whether the object will float in the given liquid or not, reference must be made to the measured density of the object as well as the given density of the liquid. If the object is less dense (from values of density obtained from the experiment) than the liquid, then the object will float in the liquid and vice versa.
Instinct to learning.
Please vote my answer branliest! Thanks.
Answer:
0.128 g
Explanation:
Given data:
Volume of gas = 146.7 cm³
Pressure of gas = 106.5 Kpa
Temperature of gas = 167°C
Mass of oxygen gas = ?
Solution:
Volume of gas = 146.7 cm³ (146.7 /1000 = 0.1467 L)
Pressure of gas = 106.5 Kpa (106.5/101 = 1.1 atm)
Temperature of gas = 167°C (167 +273.15 = 440.15 K)
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
n = PV/RT
n = 1.1 atm× 0.1467 L / 0.0821 atm.L/ mol.K × 440.15 K
n = 0.1614 / 36.14 /mol
n = 0.004 mol
Mass of oxygen:
Mass = number of moles × molar mass
Mass = 0.004 mol × 32 g/mol
Mass = 0.128 g
Answer:since,there is a single bond between the two carbon atoms and both share their one atom therefore for completing its shell it need to combine with three atoms of carbon or other element . therefore it cannot be linked to more than 3 covalent bonds since its shell will be completed to become stable .
Explanation:
Answer:
2.7 moles of Fe₂O₃ is the maximum amount that can be produced. Iron is the limiting reactant.
Explanation:
The balanced reaction is:
4 Fe + 3 O₂ → 2 Fe₂O₃
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of each compound participate in the reaction:
- Fe: 4 moles
- O₂: 3 moles
- Fe₂O3: 2 moles
The limiting reagent is one that is consumed first in its entirety, determining the amount of product in the reaction. When the limiting reagent is finished, the chemical reaction will stop.
You can use a simple rule of three as follows: if by stoichiometry 4 moles of Fe reacts with 3 moles of O₂, how much moles of Fe will be needed if 4.7 moles of O₂ react?

moles of O₂= 6.27
But 6.27 moles of Fe are not available, 5.4 moles are available. Since you have less moles than you need to react with 4.7 moles of O₂, iron Fe will be the limiting reagent.
So you can use a simple rule of three as follows: if by stoichiometry 4 moles of Fe produce 2 moles of Fe₂O₃, how many moles of Fe₂O₃ will be produced if 5.4 moles of Fe react?

moles of Fe₂O₃= 2.7 moles
Then:
<u><em>2.7 moles of Fe₂O₃ is the maximum amount that can be produced. Iron is the limiting reactant.</em></u>