Answer:
Horizontal asymptote of the graph of the function f(x) = (8x^3+2)/(2x^3+x) is at y=4
Step-by-step explanation:
I attached the graph of the function.
Graphically, it can be seen that the horizontal asymptote of the graph of the function is at y=4. There is also a <em>vertical </em>asymptote at x=0
When denominator's degree (3) is the same as the nominator's degree (3) then the horizontal asymptote is at (numerator's leading coefficient (8) divided by denominator's lading coefficient (2)) 
Let the curve C be the intersection of the cylinder
and the plane
The projection of C on to the x-y plane is the ellipse
To see clearly that this is an ellipse, le us divide through by 16, to get
or
,
We can write the following parametric equations,
for
Since C lies on the plane,
it must satisfy its equation.
Let us make z the subject first,
This implies that,
We can now write the vector equation of C, to obtain,
The length of the curve of the intersection of the cylinder and the plane is now given by,
But
Therefore the length of the curve of the intersection intersection of the cylinder and the plane is 24.0878 units correct to four decimal places.
55km/60minuess=0.916km per min. 0.916/60second=0.01527km per sec. convert km to feet. which is 50 feet. your answer is 50 feet per second
Answer:
z=128
Step-by-step explanation:
z/16=8
z=8*16
z=128