1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Eduardwww [97]
2 years ago
15

First right answer gets brainliest :)

Mathematics
1 answer:
Vsevolod [243]2 years ago
3 0

Answer:

(2 1/4, 1 1/2) A

(-1 1/4, 1 1/2) B

(-2 1/2, 1/4) C

Step-by-step explanation:

We can determine that each tick mark represents 1/4 based off the given numbers. Now we just determine the points.

(2 1/4, 1 1/2) A

(-1 1/4, 1 1/2) B

(-2 1/2, 1/4) C

You might be interested in
PLEASE HELP!!!
DIA [1.3K]
You would need 27 more dollars because f(x)=7x+2 plug in the 5 in x’s spot and you get 37 and so subtract it from 10 to get 27
7 0
3 years ago
Can somebody explain how these would be done? The selected answer is incorrect, and I was told "Nice try...express the product b
trapecia [35]

Answer:

Solution ( Second Attachment ) : - 2.017 + 0.656i

Solution ( First Attachment ) : 16.140 - 5.244i

Step-by-step explanation:

Second Attachment : The quotient of the two expressions would be the following,

6\left[\cos \left(\frac{2\pi }{5}\right)+i\sin \left(\frac{2\pi \:}{5}\right)\right] ÷ 2\sqrt{2}\left[\cos \left(\frac{-\pi }{2}\right)+i\sin \left(\frac{-\pi \:}{2}\right)\right]

So if we want to determine this expression in standard complex form, we can first convert it into trigonometric form, then apply trivial identities. Either that, or we can straight away apply the following identities and substitute,

( 1 ) cos(x) = sin(π / 2 - x)

( 2 ) sin(x) = cos(π / 2 - x)

If cos(x) = sin(π / 2 - x), then cos(2π / 5) = sin(π / 2 - 2π / 5) = sin(π / 10). Respectively sin(2π / 5) = cos(π / 2 - 2π / 5) = cos(π / 10). Let's simplify sin(π / 10) and cos(π / 10) with two more identities,

( 1 ) \cos \left(\frac{x}{2}\right)=\sqrt{\frac{1+\cos \left(x\right)}{2}}

( 2 ) \sin \left(\frac{x}{2}\right)=\sqrt{\frac{1-\cos \left(x\right)}{2}}

These two identities makes sin(π / 10) = \frac{\sqrt{2}\sqrt{3-\sqrt{5}}}{4}, and cos(π / 10) = \frac{\sqrt{2}\sqrt{5+\sqrt{5}}}{4}.

Therefore cos(2π / 5) = \frac{\sqrt{2}\sqrt{3-\sqrt{5}}}{4}, and sin(2π / 5) = \frac{\sqrt{2}\sqrt{5+\sqrt{5}}}{4}. Substitute,

6\left[ \left\frac{\sqrt{2}\sqrt{3-\sqrt{5}}}{4}+i\left\frac{\sqrt{2}\sqrt{5+\sqrt{5}}}{4}\right] ÷ 2\sqrt{2}\left[\cos \left(\frac{-\pi }{2}\right)+i\sin \left(\frac{-\pi \:}{2}\right)\right]

Remember that cos(- π / 2) = 0, and sin(- π / 2) = - 1. Substituting those values,

6\left[ \left\frac{\sqrt{2}\sqrt{3-\sqrt{5}}}{4}+i\left\frac{\sqrt{2}\sqrt{5+\sqrt{5}}}{4}\right] ÷ 2\sqrt{2}\left[0-i\right]

And now simplify this expression to receive our answer,

6\left[ \left\frac{\sqrt{2}\sqrt{3-\sqrt{5}}}{4}+i\left\frac{\sqrt{2}\sqrt{5+\sqrt{5}}}{4}\right] ÷ 2\sqrt{2}\left[0-i\right] = -\frac{3\sqrt{5+\sqrt{5}}}{4}+\frac{3\sqrt{3-\sqrt{5}}}{4}i,

-\frac{3\sqrt{5+\sqrt{5}}}{4} = -2.01749\dots and \:\frac{3\sqrt{3-\sqrt{5}}}{4} = 0.65552\dots

= -2.01749+0.65552i

As you can see our solution is option c. - 2.01749 was rounded to - 2.017, and 0.65552 was rounded to 0.656.

________________________________________

First Attachment : We know from the previous problem that cos(2π / 5) = \frac{\sqrt{2}\sqrt{3-\sqrt{5}}}{4}, sin(2π / 5) = \frac{\sqrt{2}\sqrt{5+\sqrt{5}}}{4}, cos(- π / 2) = 0, and sin(- π / 2) = - 1. Substituting we receive a simplified expression,

6\sqrt{5+\sqrt{5}}-6i\sqrt{3-\sqrt{5}}

We know that 6\sqrt{5+\sqrt{5}} = 16.13996\dots and -\:6\sqrt{3-\sqrt{5}} = -5.24419\dots . Therefore,

Solution : 16.13996 - 5.24419i

Which rounds to about option b.

7 0
3 years ago
Please help me :( I would Appreciate it
vova2212 [387]

Answer:

I think the answer is C

Step-by-step explanation:

4 0
4 years ago
Im not sure if anyone knows how to do this but if u do could u pleaseee help me with this!!!
slavikrds [6]

Answer:

y = -2x - 5

Step-by-step explanation:

<u>1) Find the slope of the line.</u>

The slope of the original line is the same as the slope of the parallel line.

Slope formula:

m = \frac{y_{2} - y_{1}}{x_{2} - x_{1}}

In this case you can choose any 2 set of points on the table.

m = \frac{4 - 2}{-3 - (-2)} = \frac{4 - 2}{-3 + 2} = \frac{2}{-1} = -2

So the slope of the line is -2

<u>2) Use the point-slope formula to find the equation of the line.</u>

Point-slope formula:

y - y_{1}  = m(x - x_{1})

Now plug in the point (0, -5) and the slope -2 into the equation.

y - (-5) = -2(x - 0)

y + 5 = -2(x - 0)

To solve the equation first apply the distributive property.

y + 5 = -2x + 0

y + 5 = -2x

Next, subtract 5 from sides.

y = -2x - 5

You know have your equation in point-slope form!

6 0
3 years ago
Can someone solve this? and tell me how?
maksim [4K]

Answer:

1/3

Step-by-step explanation:

When working with balanced expressions (stuff on both sides of the equal sign), "what you do to one side, you do to the other", which keeps it balanced.

The first thing we notice is the exponent 1/4, which is one both sides, so we can get rid of it on both sides by using the <u>reverse operation</u>.

The reverse of exponents is <u>square root</u>.

(4x + 10)^{\frac{1}{4}} = (9 + 7x)^{\frac{1}{4}}\\\sqrt[\frac{1}{4}]{(4x + 10)^{\frac{1}{4}}} = \sqrt[\frac{1}{4}]{(9 + 7x)^{\frac{1}{4}}}\\\\4x + 10 = 9 + 7x

Isolate x to solve. Separate the variables and non-variables.

4x + 10 = 9 + 7x

4x - 4x + 10 = 9 + 7x - 4x          Subtract 4x from both sides

10 = 9 + 3x                

10 - 9 = 9 - 9 + 3x            Subtract 9 from both sides

1 = 3x            Divide both sides by 3 to isolate x

x = 1/3           Answer

8 0
3 years ago
Other questions:
  • If [infinity] cn8n n = 0 is convergent, can we conclude that each of the following series is convergent? (a) [infinity] cn(−3)n
    11·1 answer
  • 10+1/3y=1 what is the answer for this
    7·1 answer
  • Ronald and shella spent $88 to go to to dinner thirty percent of this cost was for parking downtown that spent the remainder of
    15·1 answer
  • Six oranges cost $1.50. how much does 15 oranges cost?<br>​
    10·2 answers
  • What is the center and radius of the circle?
    9·2 answers
  • A parking space shaped like a parallelogram has a base of 17 feet and a height is 9 feet. A car parked in the space is 16 feet l
    6·1 answer
  • A 9 cm tall cone shaped paper cup can hold up to 58.9 cm cubed of water. What is the minimum amount of paper needed to make the
    11·1 answer
  • The sum of 3 and w is at most – 27.
    10·1 answer
  • If 5 bags weighs the same as 3 blocks how many blocks will 4 bags weigh
    5·2 answers
  • Jerome deposits $4,700 in a certificate of deposit that pays 6 1/2% interest, compounded annually. How much interest does Jerome
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!