Let's solve this problem step-by-step.
First of all, let's establish that supplementary angles are two angles which add up to 180°.
Therefore:
Equation No. 1 -
x + y = 180°
After reading the problem, we can convert it into an equation as displayed as the following:
Equation No. 2 -
3x - 8 + x = 180°
Now let's make (y) the subject in the first equation as it is only possible for (x) to be the subject in the second equation. The working out is displayed below:
Equation No. 1 -
x + y = 180°
y = 180 - x
Then, let's make (x) the subject in the second equation & solve as displayed below:
Equation No. 2 -
3x - 8 + x = 180°
4x = 180 + 8
x = 188 / 4
x = 47°
After that, substitute the value of (x) from the second equation into the first equation to obtain the value of the other angle as displayed below:
y = 180 - x
y = 180 - ( 47 )
y = 133°
We are now able to establish that the value of the two angles are as follows:
x = 47°
y = 133°
In order to determine the measure of the bigger angle, we will need to identify which of the angles is larger.
133 is greater than 47 as displayed below:
133 > 47
Therefore, the measure of the larger angle is 133°.
x = total amount split between Adam and Tom.
since we know the total amount split between both in a 18 : 17 ratio is "x", let's divide "x" by (18 + 17) and distribute accordingly to get the amount of each.
![\stackrel{Adam~received}{18\cdot \cfrac{x}{18+17}}\qquad \qquad \stackrel{Tom~received}{17\cdot \cfrac{x}{18+17}} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{since we know that Adam got "5" more}}{ \stackrel{Adam}{18\cdot \cfrac{x}{18+17}}~~ = ~~\stackrel{Tom}{17\cdot \cfrac{x}{18+17}~~ + ~~5} }\qquad \implies \qquad \cfrac{18x}{35}~~ + ~~\cfrac{17x}{35}+5](https://tex.z-dn.net/?f=%5Cstackrel%7BAdam~received%7D%7B18%5Ccdot%20%5Ccfrac%7Bx%7D%7B18%2B17%7D%7D%5Cqquad%20%5Cqquad%20%5Cstackrel%7BTom~received%7D%7B17%5Ccdot%20%5Ccfrac%7Bx%7D%7B18%2B17%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bsince%20we%20know%20that%20Adam%20got%20%225%22%20more%7D%7D%7B%20%5Cstackrel%7BAdam%7D%7B18%5Ccdot%20%5Ccfrac%7Bx%7D%7B18%2B17%7D%7D~~%20%3D%20~~%5Cstackrel%7BTom%7D%7B17%5Ccdot%20%5Ccfrac%7Bx%7D%7B18%2B17%7D~~%20%2B%20~~5%7D%20%7D%5Cqquad%20%5Cimplies%20%5Cqquad%20%5Ccfrac%7B18x%7D%7B35%7D~~%20%2B%20~~%5Ccfrac%7B17x%7D%7B35%7D%2B5)
![\stackrel{\textit{multiplying both sides by }\stackrel{LCD}{35}}{35\left( \cfrac{18x}{35} \right)~~ = ~~35\left( \cfrac{17x}{35}+5 \right)}\implies 18x~~ = ~~17x+175\implies \boxed{x =175} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{Tom~received}{17\cdot \cfrac{x}{18+17}}\implies \cfrac{17(175)}{35}\implies \blacktriangleright 85 \blacktriangleleft](https://tex.z-dn.net/?f=%5Cstackrel%7B%5Ctextit%7Bmultiplying%20both%20sides%20by%20%7D%5Cstackrel%7BLCD%7D%7B35%7D%7D%7B35%5Cleft%28%20%5Ccfrac%7B18x%7D%7B35%7D%20%5Cright%29~~%20%3D%20~~35%5Cleft%28%20%5Ccfrac%7B17x%7D%7B35%7D%2B5%20%5Cright%29%7D%5Cimplies%2018x~~%20%3D%20~~17x%2B175%5Cimplies%20%5Cboxed%7Bx%20%3D175%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7BTom~received%7D%7B17%5Ccdot%20%5Ccfrac%7Bx%7D%7B18%2B17%7D%7D%5Cimplies%20%5Ccfrac%7B17%28175%29%7D%7B35%7D%5Cimplies%20%5Cblacktriangleright%2085%20%5Cblacktriangleleft)
I think it should be 6000 more! If not im so sorry!! Have a nice day!!
The LinReg line of best fit for this data set is ŷ = -1.24X + 0.66
<h3>What is regression line?</h3>
A linear regression line has an equation of the form Y = a + bX, where X is the explanatory variable and Y is the dependent variable.
Given:
(−5, 6.3),
(−4, 5.6),
(−3, 4.8),
(−2, 3.1),
(−1, 2.5),
(0, 1.0),
(1, −1.4)
Sum of X = -14
Sum of Y = 21.9
Mean X = -2
Mean Y = 3.1286
Sum of squares (SSX) = 28
Sum of products (SP) = -34.6
Regression Equation,
ŷ = bX + a
b = SP/SSX = -34.6/28 = -1.23571
a = MY - bMX = 3.13 - (-1.24*-2) = 0.65714
ŷ = -1.23571X + 0.65714
ŷ = -1.24X + 0.66
Learn more about regression line here:
brainly.com/question/7656407
#SPJ1