Answer:
A. y ≤ 1/2x + 2
Step-by-step explanation:
Well look at the graph,
It is a solid line with it shaded down,
meaning it is y ≤,
So we can cross out B. and D.
So the y intercept is 2, we know this because the y intercept is the point on the line that touches the y axis.
now the slope can be found by seeing how far away each points are from each other,
Hence, the answer is A. y ≤ 1/2x + 2
Answer:
Step-by-step explanation:
First, note this parameters from the question.
We let x = number of $5 increases and number of 10 decreases in plates sold.
Our Revenue equation is:
R(x) = (300-10x)(10+5x)
We expand the above equation into a quadratic equation by multiplying each bracket:
R(x) = 3000 + 1500x - 3000x - 1500x^2
R(x) = -1500x^2 - 1500x + 3000 (collect like terms)
Next we simplify, by dividing through by -1500
= 1500x^2/1500 - 1500x/1500 + 3000/1500
= X^2 - x + 2
X^2 - x + 2 = 0
Next, we find the axis of symmetry using the formula x = -b/(2*a) where b = 1, a = 1
X = - (-1)/2*1
X = 1/2
Number of $5 increases = $5x1/2 = $2.5
=$2.5 + $20 = $22.5 ticket price gives max revenue.
Answer:
A. 0.5
B. 0.32
C. 0.75
Step-by-step explanation:
There are
- 28 students in the Spanish class,
- 26 in the French class,
- 16 in the German class,
- 12 students that are in both Spanish and French,
- 4 that are in both Spanish and German,
- 6 that are in both French and German,
- 2 students taking all 3 classes.
So,
- 2 students taking all 3 classes,
- 6 - 2 = 4 students are in French and German, bu are not in Spanish,
- 4 - 2 = 2 students are in Spanish and German, but are not in French,
- 12 - 2 = 10 students are in Spanish and French but are not in German,
- 16 - 2 - 4 - 2 = 8 students are only in German,
- 26 - 2 - 4 - 10 = 10 students are only in French,
- 28 - 2 - 2 - 10 = 14 students are only in Spanish.
In total, there are
2 + 4 + 2 + 10 + 8 + 10 +14 = 50 students.
The classes are open to any of the 100 students in the school, so
100 - 50 = 50 students are not in any of the languages classes.
A. If a student is chosen randomly, the probability that he or she is not in any of the language classes is

B. If a student is chosen randomly, the probability that he or she is taking exactly one language class is

C. If 2 students are chosen randomly, the probability that both are not taking any language classes is

So, the probability that at least 1 is taking a language class is
