Answer:
The answer is b.133
Step-by-step explanation:
180 is a straight line and if angle 2 is 47 then angle 3 would be 133 because 133+47=180
Answer:
x=-1/85; y=-283/85; z=2/17
Step-by-step explanation:
Using an algebraic method like elimination or substitution would take a lot of steps which could lead to mistake the calculations. In this case, I decided to use the Gaussian elimination. We can express the system in matrix form as follows:
![\left[\begin{array}{ccc}2&-4&6\\9&-3&1\\5&0&9\end{array}\right] \left[\begin{array}{ccc}x\\y\\z\end{array}\right] =\left[\begin{array}{ccc}14\\10\\1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%26-4%266%5C%5C9%26-3%261%5C%5C5%260%269%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D14%5C%5C10%5C%5C1%5Cend%7Barray%7D%5Cright%5D)
To begin the calculations, we write the system in augmented matrix form and use the Gaussian elimination:
![\left[\begin{array}{ccccc}2&-4&6&|&14\\9&-3&1&|&10\\5&0&9&|&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D2%26-4%266%26%7C%2614%5C%5C9%26-3%261%26%7C%2610%5C%5C5%260%269%26%7C%261%5Cend%7Barray%7D%5Cright%5D)
By applying the Gaussian elimination, the final matrix is the following:
![\left[\begin{array}{ccccc}1&0&0&|&-1/85\\0&1&0&|&-283/85\\0&0&1&|&2/17\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%260%260%26%7C%26-1%2F85%5C%5C0%261%260%26%7C%26-283%2F85%5C%5C0%260%261%26%7C%262%2F17%5Cend%7Barray%7D%5Cright%5D)
In order to verify the results, it´s enough to substitute the calculated values in the original equations to see if the equalities are correct. Here you can see the verification for all of the equations:

Answer:
Step-by-step explanation:
Given the expression (x+11)(2x+3)
We want to expand it and write equivalent expression
Generally if we want to expand an expression we will take one of the expression in one bracket and multiply with the other bracket and then take the other expression and multiply it with the other
E.g, (a+b) × (c + d)
Then, we take a × (c+d) and also b × (c+d)
We can do it the other way round too and it will give the same results.
So, applying this to the given expression
(x+11)(2x+3)
x(2x+3) + 11(2x+3)
2x² + 3x + 22x + 33
2x² + 25x + 33
Then, the equivalent expression is 2x² + 25x + 33
(x + 11)(2x + 3) = 2x² + 25x + 33
Answer:
y=2x+1
Step-by-step explanation:
(1,3). y=mx+b or 3=2 × 1+b, or solving for b: b=3-(2)(1). b=1