Just put the coefients in to a matrix
1x-6y-3z=4
-2x+0y-3z=-8
-2x+2y-3z=-14
![\left[\begin{array}{ccc}1&-6&-3|4\\-2&0&-3|-8\\-2&2&-3|-14\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26-6%26-3%7C4%5C%5C-2%260%26-3%7C-8%5C%5C-2%262%26-3%7C-14%5Cend%7Barray%7D%5Cright%5D%20)
mulstiply 2nd row by -1 and add to 3rd
![\left[\begin{array}{ccc}1&-6&-3|4\\-2&0&-3|-8\\0&2&0|-6\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26-6%26-3%7C4%5C%5C-2%260%26-3%7C-8%5C%5C0%262%260%7C-6%5Cend%7Barray%7D%5Cright%5D)
divde last row by 2
![\left[\begin{array}{ccc}1&-6&-3|4\\-2&0&-3|-8\\0&1&0|-3\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26-6%26-3%7C4%5C%5C-2%260%26-3%7C-8%5C%5C0%261%260%7C-3%5Cend%7Barray%7D%5Cright%5D)
multiply 2rd row by 6 and add to top one
![\left[\begin{array}{ccc}1&0&-3|-14\\-2&0&-3|-8\\0&1&0|-3\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%26-3%7C-14%5C%5C-2%260%26-3%7C-8%5C%5C0%261%260%7C-3%5Cend%7Barray%7D%5Cright%5D)
multiply 1st row by -1 and add to 2nd
![\left[\begin{array}{ccc}1&0&-3|-14\\-3&0&0|6\\0&1&0|-3\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%26-3%7C-14%5C%5C-3%260%260%7C6%5C%5C0%261%260%7C-3%5Cend%7Barray%7D%5Cright%5D)
divide 2nd row by -3
![\left[\begin{array}{ccc}1&0&-3|-14\\1&0&0|-2\\0&1&0|-3\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%26-3%7C-14%5C%5C1%260%260%7C-2%5C%5C0%261%260%7C-3%5Cend%7Barray%7D%5Cright%5D)
mulstiply 2nd row by -1 and add to 1st row
![\left[\begin{array}{ccc}0&0&-3|-12\\1&0&0|-2\\0&1&0|-3\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%260%26-3%7C-12%5C%5C1%260%260%7C-2%5C%5C0%261%260%7C-3%5Cend%7Barray%7D%5Cright%5D)
divide 1st row by -3
![\left[\begin{array}{ccc}0&0&1|4\\1&0&0|-2\\0&1&0|-3\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%260%261%7C4%5C%5C1%260%260%7C-2%5C%5C0%261%260%7C-3%5Cend%7Barray%7D%5Cright%5D)
rerange
![\left[\begin{array}{ccc}1&0&0|-2\\0&1&0|-3\\0&0&1| 4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%260%7C-2%5C%5C0%261%260%7C-3%5C%5C0%260%261%7C%204%5Cend%7Barray%7D%5Cright%5D)
x=-2
y=-3
z=4
(x,y,z)
(-2,-3,4)
B is answer
Answer:
r = - 7
Step-by-step explanation:
The common ratio r is the ratio of a term to the preceding term, that is
r = 126 ÷ - 18 = - 882 ÷ 126 = - 7
V=(1/3)hpir^2
lets say this is original, undoubled volume
so o=v=(1/3)hpir^2
so for new volume, or n, that is r to 2r, doubled radius
n=(1/3)hpi(2r)^2
n=(1/3)hpi4r^2
n=4((1/3)hpir^2)
remmember that o=(1/3)hpir^2
n=4(o)
it is 4 times the old one
The formula to solve for this would be pi(r^2)xheight. Essentially what this formula does is it takes the are of the base (pi x r^2) and multiplies it by the height of the cylinder to find how many times the base can stack on itself until it reaches the top. This formula of base are times height works for all prisms with two bases. Here are the steps to solve:
1) plug in the values
- pi(15^2) x 45
2) solve for the base area of one of the circles
- pi(15^2)=225pi
3) multiply the base area by the height
- 225pi x 45 = 10,125pi
4) final answer: the tank can hold 10,125pi cubic feet of water