Answer:
The 90% confidence interval ![-49.8](https://tex.z-dn.net/?f=-49.8%20%3C%5Cmu_1%20-%5Cmu_2%20%3C%20-16.16)
The null hypothesis is ![H_o : \mu_1 = \mu_2](https://tex.z-dn.net/?f=H_o%20%3A%20%5Cmu_1%20%3D%20%5Cmu_2)
The alternative hypothesis ![H_a : \mu_1 < \mu_2](https://tex.z-dn.net/?f=H_a%20%20%3A%20%20%5Cmu_1%20%3C%20%20%5Cmu_2)
The distribution test statistics is ![t = -3.222](https://tex.z-dn.net/?f=t%20%3D%20-3.222)
The rejection region is p-value <
The decision rule is reject the null hypothesis
The conclusion is
There is sufficient evidence to conclude that there are more passengers riding the 8:30 train
The p-value is ![p-value =0.000951](https://tex.z-dn.net/?f=p-value%20%20%3D0.000951)
Step-by-step explanation:
From the question we are told that
The first sample size ![n_1 = 30](https://tex.z-dn.net/?f=n_1%20%3D%2030)
The first sample mean is ![\= x _1 = 323](https://tex.z-dn.net/?f=%5C%3D%20x%20_1%20%3D%20323)
The first standard deviation is ![s_1 = 41](https://tex.z-dn.net/?f=s_1%20%3D%2041)
The second sample size is ![n_2 = 45](https://tex.z-dn.net/?f=n_2%20%3D%2045)
The second sample mean is ![\=x_2 = 356](https://tex.z-dn.net/?f=%5C%3Dx_2%20%3D%20356)
The second standard deviation is ![s_2 = 45](https://tex.z-dn.net/?f=s_2%20%3D%2045)
given that the confidence level is 90% then the level of significance is mathematically represented as
![\alpha = (100 -90)\%](https://tex.z-dn.net/?f=%5Calpha%20%20%3D%20%28100%20-90%29%5C%25)
![\alpha = 0.10](https://tex.z-dn.net/?f=%5Calpha%20%20%3D%200.10)
Generally the critical value of
obtained from the normal distribution table is
![Z_{\frac{\alpha }{2} } = 1.645](https://tex.z-dn.net/?f=Z_%7B%5Cfrac%7B%5Calpha%20%7D%7B2%7D%20%7D%20%3D%201.645)
Generally the pooled variance is mathematically represented as
![s^2 = \frac{(n_1 - 1)s_1^2 + (n_2 -1)s_2^2 }{n_1 + n_2 -2}](https://tex.z-dn.net/?f=s%5E2%20%3D%20%5Cfrac%7B%28n_1%20-%201%29s_1%5E2%20%20%2B%20%28n_2%20-1%29s_2%5E2%20%7D%7Bn_1%20%2B%20n_2%20-2%7D)
![s^2 = \frac{(30 -1)(41^2) + (45-1)45^2}{30+45 -2}](https://tex.z-dn.net/?f=s%5E2%20%3D%20%5Cfrac%7B%2830%20-1%29%2841%5E2%29%20%2B%20%2845-1%2945%5E2%7D%7B30%2B45%20-2%7D)
![s^2 = 1888.34](https://tex.z-dn.net/?f=s%5E2%20%3D%201888.34)
Generally the standard error is mathematically represented as
![SE = \sqrt{\frac{s^2}{n_1} + \frac{s^2}{n_2} }](https://tex.z-dn.net/?f=SE%20%3D%20%20%5Csqrt%7B%5Cfrac%7Bs%5E2%7D%7Bn_1%7D%20%2B%20%5Cfrac%7Bs%5E2%7D%7Bn_2%7D%20%20%7D)
=> ![SE = \sqrt{\frac{1888.34}{30} + \frac{1888.34}{45} }](https://tex.z-dn.net/?f=SE%20%3D%20%20%5Csqrt%7B%5Cfrac%7B1888.34%7D%7B30%7D%20%2B%20%5Cfrac%7B1888.34%7D%7B45%7D%20%20%7D)
=> ![SE = 10.24](https://tex.z-dn.net/?f=SE%20%3D%20%2010.24)
Generally the margin of error is mathematically evaluated as
![E = Z_{\frac{\alpha }{2} } * SE](https://tex.z-dn.net/?f=E%20%3D%20%20Z_%7B%5Cfrac%7B%5Calpha%20%7D%7B2%7D%20%7D%20%2A%20SE)
![E = 1.645* 10.24](https://tex.z-dn.net/?f=E%20%3D%20%201.645%2A%2010.24)
![E = 16.85](https://tex.z-dn.net/?f=E%20%3D%2016.85)
Generally the 90% confidence interval is mathematically represented as
![\=x_1 -\=x_2 -E < \mu_1 -\mu_2 < \=x_1 -\=x_2 +E](https://tex.z-dn.net/?f=%5C%3Dx_1%20-%5C%3Dx_2%20-E%20%3C%20%5Cmu_1%20-%5Cmu_2%20%3C%20%5C%3Dx_1%20-%5C%3Dx_2%20%2BE)
![323 -356 -16.84](https://tex.z-dn.net/?f=323%20-356%20-16.84%20%3C%5Cmu_1%20-%5Cmu_2%20%3C%20323%20-356%20%2B16.84)
![-49.8](https://tex.z-dn.net/?f=-49.8%20%3C%5Cmu_1%20-%5Cmu_2%20%3C%20-16.16)
The null hypothesis is ![H_o : \mu_1 = \mu_2](https://tex.z-dn.net/?f=H_o%20%3A%20%5Cmu_1%20%3D%20%5Cmu_2)
The alternative hypothesis ![H_a : \mu_1 < \mu_2](https://tex.z-dn.net/?f=H_a%20%20%3A%20%20%5Cmu_1%20%3C%20%20%5Cmu_2)
Generally the test statistics is mathematically represented as
![t = \frac{\= x_1 - \=x_2 }{SE}](https://tex.z-dn.net/?f=t%20%3D%20%20%5Cfrac%7B%5C%3D%20x_1%20-%20%5C%3Dx_2%20%7D%7BSE%7D)
=> ![t = \frac{323-356}{10.24}](https://tex.z-dn.net/?f=t%20%3D%20%5Cfrac%7B323-356%7D%7B10.24%7D)
=> ![t = -3.222](https://tex.z-dn.net/?f=t%20%3D%20-3.222)
Generally the degree of freedom is mathematically represented as
![df = n_1+n_2 -2](https://tex.z-dn.net/?f=df%20%3D%20%20n_1%2Bn_2%20-2)
![df = 30 + 45 -2](https://tex.z-dn.net/?f=df%20%3D%2030%20%2B%2045%20-2)
![df = 73](https://tex.z-dn.net/?f=df%20%3D%2073)
The p-value is obtained from the student t distribution table at degree of freedom of 73 at 0.05 level of significance
The value is ![p-value =0.000951](https://tex.z-dn.net/?f=p-value%20%20%3D0.000951)
Here the level of significance is ![\alpha = 5\% = 0.05](https://tex.z-dn.net/?f=%5Calpha%20%3D%20%205%5C%25%20%20%3D%20%200.05)
Given that the p-value <
then we reject the null hypothesis
Then the conclusion is
There is sufficient evidence to conclude that there are more passengers riding the 8:30 train