Wanna play da hood?nljsisos)/8/8-)/$2/sciejosjajathre
Answer:
Perishable foods should never be thawed on the counter or in hot water and must not be left at room temperature for more than two hours. There are safe ways to thaw food: in the refrigerator, in cold water, and in the microwave.
Explanation:
Answer:
a) The response indicates that a pH below or above this range will most likely cause enolase to denature/change its shape and be less efficient or unable to catalyze the reaction.
b)The response indicates that the appropriate negative control is to measure the reaction rate (at the varying substrate concentrations) without any enzyme present.
c)The response indicated that the enolase has a more stable/functional/correct/normal protein structure at the higher temperature of 55°C than at 37°C because the enzyme is from an organism that is adapted to growth at 55°C.
Explanation:
Enolase catalyzes the conversion of 2-phosphoglycerate to phosphoenolpyruvate during both glycolysis and gluconeogenesis.In bacteria, enolases are highly conserved enzymes and commonly exist as homodimers.
The temperature optimum for enolase catalysis was 80°C, close to the measured thermal stability of the protein which was determined to be 75°C, while the pH optimum for enzyme activity was 6.5. The specific activities of purified enolase determined at 25 and 80°C were 147 and 300 U mg−1 of protein, respectively. Km values for the 2-phosphoglycerate/phosphoenolpyruvate reaction determined at 25 and 80°C were 0.16 and 0.03 mM, respectively. The Km values for Mg2+ binding at these temperatures were 2.5 and 1.9 mM, respectively.
Enolase-1 from Chloroflexus aurantiacus (EnoCa), a thermophilic green non-sulfur bacterium that grows photosynthetically under anaerobic conditions. The biochemical and structural properties of enolase from C. aurantiacus are consistent with this being thermally adapted.
The correct answer is D. Cell Membrane because the cell membrane contains two phospholipid layers with the protein molecules attached to them throughout.
Hope I helped! :)
Answer:
The question is not clear so let me explain about the diffusion of water.
Explanation:
Osmosis can be described as the diffusion of water molecules from an area of lower solute to an area of higher solute. In osmosis the molecules of water move along a concentration gradient hence, it is a passive transport. No energy is required for this process to occur.
For example, consider a solution which has a cell which is high in solutes. The water will move into the cell by osmosis and the solutes will move out of the cell.