Answer:
- P(t) = 100·2.3^t
- 529 after 2 hours
- 441 per hour, rate of growth at 2 hours
- 5.5 hours to reach 10,000
Step-by-step explanation:
It often works well to write an exponential expression as ...
value = (initial value)×(growth factor)^(t/(growth period))
(a) Here, the growth factor for the bacteria is given as 230/100 = 2.3 in a period of 1 hour. The initial number is 100, so we can write the pupulation function as ...
P(t) = 100·2.3^t
__
(b) P(2) = 100·2.3^2 = 529 . . . number after 2 hours
__
(c) P'(t) = ln(2.3)P(t) ≈ 83.2909·2.3^t
P'(2) = 83.2909·2.3^2 ≈ 441 . . . bacteria per hour
__
(d) We want to find t such that ...
P(t) = 10000
100·2.3^t = 10000 . . . substitute for P(t)
2.3^t = 100 . . . . . . . . divide by 100
t·log(2.3) = log(100)
t = 2/log(2.3) ≈ 5.5 . . . hours until the population reaches 10,000
Answer:answer is 387
Step-by-step explanation:ok got it
The small box is 384inches squared for the volume and the larger box is 2,700 inches squared so if you place the smaller box inside the larger box the room left inside the larger box would be 2,316 inches squared
"fifty thousand six hundred and seventy nine" and 50,000 + 600 + 70 + 9
It’s between 3 and 4 but a little closer to 4