Answer: 64 distinct even factors
Step-by-step explanation:
let the 2 distinct numbers be b and c and the integer is expected to be 25b3c425b3c4
since b, c > 2 and prime numbers,
potential options include 3, 5, and 7
hence the likelihoods are (b = 3, c = 5), (b = 5, c = 3), (b = 3, c = 7), (b = 7, c = 3), (b = 5, c = 7), (b = 7, c = 5)
Possibility 1 (b = 3, c = 5)
integer is now 253354253354
the distinct even factors = 2, 202, 262, 1934, 19802, 26462, 195334, 253354, 2000002, 2594062, 19148534, 25588754, 262000262, 1934001934, 2508457954, 253354253354
number of distinct even factors = 16
Possibility 2 (b = 5, c = 3)
integer is now 255334255334
the distinct even factors = 2, 86, 202, 5938, 8686, 19802, 253354, 599738, 851486, 2000002, 25788734, 58792138, 25588754, 86000086, 2528061934, 1934001934, 5938005938, 253354253354
number of distinct even factors = 18
Possibility 3 (b = 3, c = 7)
integer is now 253374253374
the distinct even factors = 2, 6, 22, 66, 202, 242, 606, 698, 726, 2094, 2222, 6666, 7678, 19802, 23034, 24442, 59406, 70498, 73326, 84458, 211494, 217822, 253374, 653466, 775478, 2000002, 2326434, 2396042, 6000006, 6910898, 7188126, 8530258, 20732694, 22000022, 25590774, 66000066, 76019878, 228059634, 242000242, 698000698, 726000726, 836218658, 2094002094, 2508655974, 7678007678, 23034023034, 84458084458,253354253354
number of distinct even factors = 48
Possibility 4 (b = 7, c = 3)
integer is now 257334257334
the distinct even factors = 2, 6, 14, 22, 42, 66, 154, 202, 462, 606, 1114, 1414, 2222, 3342, 4242, 6666, 7798, 12254, 15554, 19802, 23394, 36762, 46662, 59406, 85778, 112514, 138614, 217822, 257334, 337542, 415842, 653466, 787598, 1237654, 1524754, 2000002, 2362794, 3712962, 4574262, 6000006, 8663578, 11029714, 14000014, 22000022, 25990734, 33089142, 42000042, 66000066, 77207998, 121326854, 154000154, 231623994, 363980562, 462000462, 849287978, 1114001114, 2547863934, 3342003342, 7798007798, 12254012254, 23394023394, 36762036762, 85778085778, 257334257334
number of distinct even factors = 64
Possibility 5 (b = 5, c = 7)
integer is now 255374255374
the distinct even factors = 2, 14, 34, 58, 74, 202, 238, 406, 518, 986, 1258, 1414, 2146, 3434, 5858, 6902, 7474, 8806, 15022, 19802, 24038, 36482, 41006, 52318, 99586, 127058, 138614, 216746, 255374, 336634, 574258, 697102, 732674, 889406, 1517222, 2000002, 2356438, 3684682, 4019806, 5128718, 9762386, 12455458, 14000014, 21247546, 25792774, 34000034, 58000058, 68336702, 74000074, 87188206, 148732822, 238000238, 361208282, 406000406, 518000518, 986000986, 1258001258, 2146002146, 2528457974, 6902006902, 8806008806, 15022015022, 36482036482, 255374255374
number of distinct even factors = 64
Possibility 6 (b = 7, c = 5)
integer is now 257354257354
the distinct even factors = 2, 202, 19802, 257354, 2000002, 25992754, 2548061954, 257354257354
number of distinct even factors = 8
From the six possibilities, the highest number of likely distinct even factors is 64