1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natulia [17]
3 years ago
11

array of String objects, words, has been properly declared and initialized. Each element of words contains a String consisting o

f lowercase letters (a–z). Write a code segment that uses an enhanced for loop to print all elements of words that end with "ing". As an example, if words contains {"ten", "fading", "post", "card", "thunder", "hinge", "trailing", "batting"}, then the following output should be produced by the code segment.
Computers and Technology
1 answer:
Vlad [161]3 years ago
5 0

Answer:

for(String s:words)

   if(s.endsWith("ing"))

 System.out.println(s);

Explanation:

Create an enhanced for loop that iterates through the words array

Check if an element in words ends with "ing" using endsWith() method (Since it is said that strings are lowercase letters, we do not need to check it)

If you find one that ends with "ing", print the element

You might be interested in
HELP 15 POINTS
masya89 [10]

Answer:

A I think I might be wrong

6 0
3 years ago
Read 2 more answers
There will be 10 numbers stored contiguously in the computer at location x 7000 . Write a complete LC-3 program, starting at loc
Artist 52 [7]

Answer:

The LC-3 (Little Computer 3) is an ISA definition for a 16-bit computer. Its architecture includes physical memory mapped I/O via a keyboard and display; TRAPs to the operating system for handling service calls; conditional branches on N, Z, and P condition codes; a subroutine call/return mechanism; a minimal set of operation instructions (ADD, AND, and NOT); and various addressing modes for loads and stores (direct, indirect, Base+offset, PC-relative, and an immediate mode for loading effective addresses). Programs written in LC-3 assembler execute out of a 65536 word memory space. All references to memory, from loading instructions to loading and storing register values, pass through the get Mem Adr() function. The hardware/software function of Project 5 is to translate virtual addresses to physical addresses in a restricted memory space. The following is the default, pass-through, MMU code for all memory references by the LC-3 simulator.

unsigned short int get Mem Adr(int va, int rwFlg)

{

unsigned short int pa;

// Warning: Use of system calls that can cause context switches may result in address translation failure

// You should only need to use gittid() once which has already been called for you below. No other syscalls

// are necessary.

TCB* tcb = get TCB();

int task RPT = tcb [gettid()].RPT;

pa = va;

// turn off virtual addressing for system RAM

if (va < 0x3000) return &memory[va];

return &memory[pa];

} // end get MemAdr

Simple OS, Tasks, and the LC-3 Simulator

We introduce into our simple-os a new task that is an lc3 Task. An lc3 Task is a running LC-3 simulator that executes an LC-3 program loaded into the LC-3 memory. The memory for the LC-3 simulator, however, is a single global array. This single global array for memory means that alllc3 Tasks created by the shell use the same memory for their programs. As all LC-3 programs start at address 0x3000 in LC-3, each task overwrites another tasks LC-3 program when the scheduler swaps task. The LC-3 simulator (lc3 Task) invokes the SWAP command every several LC-3 instruction cycles. This swap invocation means the scheduler is going to be swapping LC-3 tasks before the tasks actually complete execution so over writing another LC-3 task's memory in the LC-3 simulator is not a good thing.

You are going to implement virtual memory for the LC-3 simulator so up to 32 LC-3 tasks can be active in the LC-3 simulator memory without corrupting each others data. To implement the virtual memory, we have routed all accesses to LC-3 memory through a get Mem Adr function that is the MMU for the LC-3 simulator. In essence, we now have a single LC-3 simulator with a single unified global memory array yet we provide multi-tasking in the simulator for up to 32 LC-3 programs running in their own private address space using virtual memory.

We are implementing a two level page table for the virtual memory in this programming task. A two level table relies on referring to two page tables both indexed by separate page numbers to complete an address translation from a virtual to a physical address. The first table is referred to as the root page table or RPT for short. The root page table is a fixed static table that always resides in memory. There is exactly one RPT per LC-3 task. Always.

The memory layout for the LC=3 simulator including the system (kernel) area that is always resident and non-paged (i.e., no virtual address translation).

The two figures try to illustrate the situation. The lower figure below demonstrates the use of the two level page table. The RPT resident in non-virtual memory is first referenced to get the address of the second level user page table or (UPT) for short. The right figure in purple and green illustrates the memory layout more precisely. Anything below the address 0x3000 is considered non-virtual. The address space is not paged. The memory in the region 0x2400 through 0x3000 is reserved for the RPTs for up to thirty-two LC-3 tasks. These tables are again always present in memory and are not paged. Accessing any RPT does not require any type of address translation.

The addresses that reside above 0x3000 require an address translation. The memory area is in the virtual address space of the program. This virtual address space means that a UPT belonging to any given task is accessed using a virtual address. You must use the RPT in the system memory to keep track of the correct physical address for the UPT location. Once you have the physical address of the UPT you can complete the address translation by finding the data frame and combining it with the page offset to arrive at your final absolute physical address.

A Two-level page table for virtual memory management.

x7000 123F x7000 0042

x7001 6534 x7001 6534

x7002 300F x7002 300F

x7003 4005 after the program is run, memory x7003 4005

x7004 3F19

7 0
3 years ago
Read 2 more answers
Create a class called Fraction. Provide a constructor that takes 2 integers. Provide methods for:
tekilochka [14]

Answer:

Explanation;

else

System.out.println("f1 and f2 are not equal");

switch (input.charAt(0)

{

case '+':

f3 = f1.add(f2);

System.out.println("f1+f2=" + f3);

break;

case '-':

f3 = f1.subtract(f2);

System.out.println("f1-f2=" + f3);

break;

case '*':

f3 = f1.multiply(f2);

System.out.println("f1*f2="+f3);

break;

case '/':

f3 = f1.divide(f2);

System.out.println("f1/f2="+f3);

break;

default:

System.out.println("Illegal command: " + input );

break;

}

}// end of while loop

} // end of main

}

 

Note ; this is the last part of the programme check the attachment from 1-5  this is the 6th .

8 0
3 years ago
A personal identification number (PIN) that opens a certain lock consists of a sequence of 3 different digits from 0 through 9,
Elan Coil [88]

Answer:

<u>720</u> possible PIN can be generated.

Explanation:

To calculate different number of orders of digits to create password and PIN, we calculate permutation.

Permutation is a term that means the number of methods or ways in which different numbers, alphabets, characters and objects can arranged or organized. To calculate the permutation following formula will be used:

nPr = n!/(n-r)!

there P is permutation, n is number of digits that need to be organize, r is the size of subset (Number of digits a password contains)

So in question we need to calculate

P=?

where

n= 10   (0-9 means total 10 digits)

r= 3     (PIN Consist of three digits)

So by using formula

10P3 = 10!/(10-3)!

        =10!/7!

        = 10x9x8x7!/7!

        = 10x9x8

        = 720

7 0
3 years ago
Write multiple if statements: If carYear is before 1967, print "Probably has few safety features." (without quotes). If after 19
Liono4ka [1.6K]

Answer:

public class Main

{

public static void main(String[] args) {

    int carYear = 1995;

   

    if(carYear < 1967)

        System.out.println("Probably has few safety features.");

    if(carYear > 1971)

        System.out.println("Probably has head rests.");

    if(carYear > 1992)

        System.out.println("Probably has anti-lock brakes.");

    if(carYear > 2002)

        System.out.println("Probably has tire-pressure monitor.");

   

}

}

Explanation:

The code is in Java.

Initialize the carYear

Use if statements to handle year before 1967, after 1971, after 1992 and after 2002.

Print the required message for each if statement

5 0
3 years ago
Other questions:
  • What three steps Name a group??
    14·1 answer
  • Which extensions can help drive installs of your mobile app?
    12·1 answer
  • the microsoft excel application is a _____ program. database word-processing spreadsheet desktop-publishing
    8·1 answer
  • Which represents the hierarchical structure of a Google Analytics account from top to bottom?
    5·1 answer
  • You should always assign the Needs Met rating before assigning the Page Quality rating, T or F ?
    6·2 answers
  • First let 2161965 answer<br> and then you ..
    11·2 answers
  • FREEE POINTS
    8·2 answers
  • What is the purpose of file extensions? A. They execute the mail merge function, B. They tell the operating system what kind of
    15·2 answers
  • Heather writes an essay for language arts and receives a poor grade. To figure out why she gets a poor grade, Heather looks at t
    14·2 answers
  • In order to personalize your desktop, you may click on: Start&gt;settings&gt;Personalization . . .
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!