Answer:
mRNA must start membrane protein in the cytoplasm and, after that, continue it in the rough ER.
Explanation:
Protein synthesis is initiated when mRNA meets a free ribosome, the primary structure for protein synthesis. Ribosomes can be found in the r<em>ough endoplasmic reticulum</em> or floating in the cytosol. They read the mRNA code and add the correct amino acid using transference RNA to build the protein.
The <u>rough endoplasmic reticulum</u> is in charge of the synthesis and transport of the membrane proteins. It is also in charge of the latest protein modifications after transduction. Synthesis of membrane proteins <u>starts in the cytoplasm</u> with the production of a molecule portion known as a signal sequence. This portion leads the synthesizing protein and associated ribosome to a specific region in the Rough endoplasmic reticulum where it continues the protein building.
Membrane proteins are synthesized in the endoplasmic reticulum and <em>sent to the Golgi complex in vesicles</em>, where it happens the final association of carbohydrates with proteins. Finally, protein is transported <em>from the Golgi complex to its final destiny, the membrane. </em>
No 6 is common for N and H. 3 is only for H(Hydrogen).
For finding the number of hydrogen atoms we should multiply 6 with 3
So, 6*3 = 18. So there will be 18 hydrogen atoms in 6NH₃
I believe <span>a </span>regulatory<span> repressor </span>protein<span> is normally bound to the operator. This prevents the transcription of the genes on the </span>operon<span>.</span>
Answer:
scientific theories must be tested by more than one individual multiply times for it to become scientific law
In much of a digestive tract such as the human gastrointestinal tract, smooth muscle tissue contracts in sequence to produce a peristaltic wave, which propels a ball of food (called a bolus while in the esophagus and upper gastrointestinal tract and chyme in the stomach) along the tract.