Hydrogen escape from Earth because he is ligher than molecules of nitrogen and oxygen. Hydrogen <span>move faster and can escape Earth's gravitational force.
One mole of molecule of hydrogen (H</span>₂)<span> has molecular mass 2 g/mol, molecule of nitrogen (N</span>₂) <span>has molecular mass 28 g/mol and oxygen (O</span>₂) has 32 g/mol.
The pressure exerted by 0.400 moles of carbon dioxide in a 5.00 Liter container at 25 °C would be 1.9563 atm or 1486.788 mm Hg.
<h3>The ideal gas law</h3>
According to the ideal gas law, the product of the pressure and volume of a gas is a constant.
This can be mathematically expressed as:
pv = nRT
Where:
p = pressure of the gas
v = volume
n = number of moles
R = Rydberg constant (0.08206 L•atm•mol-1K)
T = temperature.
In this case:
p is what we are looking for.
v = 5.00 L
n = 0.400 moles
T = 25 + 273
= 298 K
Now, let's make p the subject of the formula of the equation.
p = nRT/v
= 0.400 x 0.08206 x 298/5
= 1.9563 atm
Recall that: 1 atm = 760 mm Hg
Thus:
1.9563 atm = 1.9563 x 760 mm Hg
= 1486.788 mm Hg
In other words, the pressure exerted by the gas in atm is 1.9563 atm and in mm HG is 1486.788 mm Hg.
More on the ideal gas law can be found here: brainly.com/question/28257995
#SPJ1
Answer:
Explanation:Use the Gizmo to mix 200 g of copper at 100 °C with 1,000 g of water at 20 °C. Record the data and calculated answers for copper in the 2 tables below. Accepted values for % error calculations can be found below these 2 tables.
DATA
Copper
Lead
Mass of Metal
Yes what the other person said can I plz get an thanks