Answer:Chemistry problems can be solved using a variety of techniques.
Explanation: Many chemistry teachers and most introductory chemistry texts illustrate problem solutions using the factor-label method. ... The use of analogies and schematic diagrams results in higher achievement on problems involving moles, stoichiometry, and molarity. Hope this helped!
Answer:
Lowering the object near the ground decreases its <u>potential energy.</u>
<u></u>
Explanation:
Potential Energy : Energy possessed by the object due to its shape ,Size and Position is called potential energy.
Example :
Change in shape and size : When you compress the spring , potential energy is introduced in it . So it expand quickly when you remove your hand.
Change in position : when you swing , after attaining maximum height (extreme ends) , the swing comes back on its on .This is because at maximum height ,the swing has<u> maximum Potential energy . </u>Hence it fall back on its on because it already has potential energy.
Potential energy(P) is given by the formula :
P = mgh
where ,
m= mass of the object
g = acceleration due to gravity
h = height of the object from the ground
If the height of the object increases from the ground , its potential energy also get increase.
<u><em>On lowering the object The height of the object from the ground reduces . So potential energy also reduces.</em></u>
Answer: C)The smaller the soil particles, the more water and air available for plant growth.
Explanation:
The reaction is as follows:
2 H₂(g) + O₂(g) → 2 H₂O(g) . ΔH = - 483.5 kJ
Using the change in enthalpy and heat, calculate the moles as follows:
Moles of H₂ = -

x 2 mol H₂
= - 216 kJ / (-483.5 kJ) x 2 mol H₂
= 0.893 mol H₂
Calculate the mass of H₂ using the moles and molar mass as follows:
0.893 mol H₂ x (2.02 g H₂ / 1 mol H₂) = 1.79 g H₂
Therefore, the mass of hydrogen gas is 1.79 g