First, tan(<em>θ</em>) = sin(<em>θ</em>) / cos(<em>θ</em>), so if cos(<em>θ</em>) = 3/5 > 0 and tan(<em>θ</em>) < 0, then it follows that sin(<em>θ</em>) < 0.
Recall the Pythagorean identity:
sin²(<em>θ</em>) + cos²(<em>θ</em>) = 1
Then
sin(<em>θ</em>) = -√(1 - cos²(<em>θ</em>)) = -4/5
and so
tan(<em>θ</em>) = (-4/5) / (3/5) = -4/3
The remaining trig ratios are just reciprocals of the ones found already:
sec(<em>θ</em>) = 1/cos(<em>θ</em>) = 5/3
csc(<em>θ</em>) = 1/sin(<em>θ</em>) = -5/4
cot(<em>θ</em>) = 1/tan(<em>θ</em>) = -3/4
Answer: It would probably be 30
Step-by-step explanation:
The ratio is 10:0 , 20:10 , 30:20 , 40:30 , 50:40, 60:50 , etc…
so basically you just need to know the ratios!
Hope I could help :)
Answer:
12 which is on C
Step-by-step explanation:
use pathogoras theorem
a^2+b^2=c^2
16^2+b^2=20^2
256+b^2=400
b^2=400-256
b^2=144
b= square root of 144
b= 12