Answer:
![The\ slope\ of\ the\ line\ AB\ is \frac{1}{7} .](https://tex.z-dn.net/?f=%20The%5C%20slope%5C%20of%5C%20the%5C%20line%5C%20AB%5C%20is%20%5Cfrac%7B1%7D%7B7%7D%20.)
Step-by-step explanation:
Formula for slope
![m = \frac{y_{2} - y_{1}}{x_{2} - x_{1}}](https://tex.z-dn.net/?f=m%20%3D%20%5Cfrac%7By_%7B2%7D%20-%20y_%7B1%7D%7D%7Bx_%7B2%7D%20-%20x_%7B1%7D%7D)
As the Line AB contains points A (8, −4) and B (1, −5).
Put points value in the above
![m = \frac{y_{2} - y_{1}}{x_{2} - x_{1}}](https://tex.z-dn.net/?f=m%20%3D%20%5Cfrac%7By_%7B2%7D%20-%20y_%7B1%7D%7D%7Bx_%7B2%7D%20-%20x_%7B1%7D%7D)
![m = \frac{- 5- (-4)}{1 - 8}](https://tex.z-dn.net/?f=m%20%3D%20%5Cfrac%7B-%205-%20%28-4%29%7D%7B1%20-%208%7D)
![m = \frac{- 5 + 4}{1 - 8}](https://tex.z-dn.net/?f=m%20%3D%20%5Cfrac%7B-%205%20%2B%204%7D%7B1%20-%208%7D)
![m = \frac{- 1}{-7}](https://tex.z-dn.net/?f=m%20%3D%20%5Cfrac%7B-%201%7D%7B-7%7D)
![m = \frac{1}{7}](https://tex.z-dn.net/?f=m%20%3D%20%5Cfrac%7B1%7D%7B7%7D)
![Therefore\ the\ slope\ of\ the\ line\ AB\ is \frac{1}{7} .](https://tex.z-dn.net/?f=Therefore%5C%20the%5C%20slope%5C%20of%5C%20the%5C%20line%5C%20AB%5C%20is%20%5Cfrac%7B1%7D%7B7%7D%20.)
Answer:
10p+5
Step-by-step explanation:
a) 8:14
b) 6:8
yeah its telling me I'm short of words
Answer:
acute
Step-by-step explanation:
<u>Answer-</u> Length of the curve of intersection is 13.5191 sq.units
<u>Solution-</u>
As the equation of the cylinder is in rectangular for, so we have to convert it into parametric form with
x = cos t, y = 2 sin t (∵ 4x² + y² = 4 ⇒ 4cos²t + 4sin²t = 4, then it will satisfy the equation)
Then, substituting these values in the plane equation to get the z parameter,
cos t + 2sin t + z = 2
⇒ z = 2 - cos t - 2sin t
∴ ![\frac{dx}{dt} = -\sin t](https://tex.z-dn.net/?f=%5Cfrac%7Bdx%7D%7Bdt%7D%20%3D%20-%5Csin%20t)
![\frac{dy}{dt} = 2 \cos t](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdt%7D%20%3D%202%20%5Ccos%20t)
![\frac{dz}{dt} = \sin t-2cos t](https://tex.z-dn.net/?f=%5Cfrac%7Bdz%7D%7Bdt%7D%20%3D%20%5Csin%20t-2cos%20t)
As it is a full revolution around the original cylinder is from 0 to 2π, so we have to integrate from 0 to 2π
∴ Arc length
![= \int_{0}^{2\pi}\sqrt{(\frac{dx}{dt})^{2}+(\frac{dy}{dt})^{2}+(\frac{dz}{dt})^{2}](https://tex.z-dn.net/?f=%3D%20%5Cint_%7B0%7D%5E%7B2%5Cpi%7D%5Csqrt%7B%28%5Cfrac%7Bdx%7D%7Bdt%7D%29%5E%7B2%7D%2B%28%5Cfrac%7Bdy%7D%7Bdt%7D%29%5E%7B2%7D%2B%28%5Cfrac%7Bdz%7D%7Bdt%7D%29%5E%7B2%7D)
![=\int_{0}^{2\pi}\sqrt{(-\sin t)^{2}+(2\cos t)^{2}+(\sin t-2\cos t)^{2}](https://tex.z-dn.net/?f=%3D%5Cint_%7B0%7D%5E%7B2%5Cpi%7D%5Csqrt%7B%28-%5Csin%20t%29%5E%7B2%7D%2B%282%5Ccos%20t%29%5E%7B2%7D%2B%28%5Csin%20t-2%5Ccos%20t%29%5E%7B2%7D)
![=\int_{0}^{2\pi}\sqrt{(2\sin t)^{2}+(8\cos t)^{2}-(4\sin t\cos t)](https://tex.z-dn.net/?f=%3D%5Cint_%7B0%7D%5E%7B2%5Cpi%7D%5Csqrt%7B%282%5Csin%20t%29%5E%7B2%7D%2B%288%5Ccos%20t%29%5E%7B2%7D-%284%5Csin%20t%5Ccos%20t%29)
Now evaluating the integral using calculator,
![= 13.5191](https://tex.z-dn.net/?f=%3D%2013.5191)